

Example 70. Solve $x \equiv 4 \pmod{5}$, $x \equiv 10 \pmod{13}$.

Solution. $x \equiv 4 \cdot 13 \cdot \underbrace{13^{-1}_{\text{mod } 5}}_2 + 10 \cdot 5 \cdot \underbrace{5^{-1}_{\text{mod } 13}}_{-5} \equiv 104 - 250 \equiv 49 \pmod{65}$

Check. Since it is easy to do so, we should quickly check our answer: $49 \equiv 4 \pmod{5}$, $49 \equiv 10 \pmod{13}$

Example 71. Let $p, q > 3$ be distinct primes.

- Show that $x^2 \equiv 9 \pmod{p}$ has exactly two solutions (i.e. ± 3).
- Show that $x^2 \equiv 9 \pmod{pq}$ has exactly four solutions (± 3 and two more solutions $\pm a$).

Solution.

- If $x^2 \equiv 9 \pmod{p}$, then $0 \equiv x^2 - 9 = (x - 3)(x + 3) \pmod{p}$. Since p is a prime it follows that $x - 3 \equiv 0 \pmod{p}$ or $x + 3 \equiv 0 \pmod{p}$. That is, $x \equiv \pm 3 \pmod{p}$.
- By the CRT, we have $x^2 \equiv 9 \pmod{pq}$ if and only if $x^2 \equiv 9 \pmod{p}$ and $x^2 \equiv 9 \pmod{q}$. Hence, $x \equiv \pm 3 \pmod{p}$ and $x \equiv \pm 3 \pmod{q}$. These combine in four different ways. For instance, $x \equiv 3 \pmod{p}$ and $x \equiv 3 \pmod{q}$ combine to $x \equiv 3 \pmod{pq}$. However, $x \equiv 3 \pmod{p}$ and $x \equiv -3 \pmod{q}$ combine to something modulo pq which is different from 3 or -3 .

Why primes > 3 ? Why did we exclude the primes 2 and 3 in this discussion?

Comment. There is nothing special about 9. The same is true for $x^2 \equiv a^2 \pmod{pq}$ for each integer a .

Example 72. Determine all solutions to $x^2 \equiv 9 \pmod{35}$.

Solution. By the CRT:

$$\begin{aligned} x^2 &\equiv 9 \pmod{35} \\ \iff x^2 &\equiv 9 \pmod{5} \text{ and } x^2 \equiv 9 \pmod{7} \\ \iff x &\equiv \pm 3 \pmod{5} \text{ and } x \equiv \pm 3 \pmod{7} \end{aligned}$$

The two obvious solutions modulo 35 are ± 3 . To get one of the two additional solutions, we solve $x \equiv 3 \pmod{5}$, $x \equiv -3 \pmod{7}$. [Then the other additional solution is the negative of that.]

$$x \equiv 3 \cdot 7 \cdot \underbrace{7^{-1}_{\text{mod } 5}}_3 - 3 \cdot 5 \cdot \underbrace{5^{-1}_{\text{mod } 7}}_3 \equiv 63 - 45 \equiv 18 \pmod{35}$$

Hence, the solutions are $x \equiv \pm 3 \pmod{35}$ and $x \equiv \pm 17 \pmod{35}$.

$[\pm 18 \equiv \pm 17 \pmod{35}]$

Silicon slave labor. We can let Sage do the work for us as follows:

Sage] `solve_mod(x^2 == 9, 35)`

$[(17), (32), (3), (18)]$