Notes for Lecture 12 Mon, 2/9/2026

| Sage |

Any serious cryptography involves computations that need to be done by a machine. Let us see
how to use the open-source computer algebra system Sage to do basic computations for us.

Sage is freely available at sagemath.org. Instead of installing it locally (it's huge!) we can conveniently use it
in the cloud at cocalc.com from any browser.

[For basic computations, you can also simply use the textbox on our course website.]

Sage is built as a Python library, so any Python code is valid. For starters, we will use it as a fancy calculator.

Example 73. Let’'s start with some basics.
Sage] 17 % 12
5
Sage] (1 + 5) /% 2 # don’t forget the brackets
0
Sage] inverse_mod(17, 23)
19
Sage] xgcd(17, 23)
(1,—4,3)
Sage] -4%17 + 3%23
1
Sage] euler_phi(84)

24

Example 74. Why is the following bad?
Sage] 31003 % 101

27

The reason is that this computes 31°°3 first, and then reduces that huge number modulo 101:

Sage] 371003

35695912125981779196042292013307897881066394884308000526952849942124372128361032287601\
01447396641767302556399781555972361067577371671671062036425358196474919874574608035466\
17047063989041820507144085408031748926871104815910218235498276622866724603402112436668"
09387969298949770468720050187071564942882735677962417251222021721836167242754312973216\
80102291029227131545307753863985171834477895265551139587894463150442112884933077598746\
0412516173477464286587885568673774760377090940027

We know how to efficiently avoid computing huge intermediate numbers (binary exponentiation!).
Sage does the same if we instead use something like:

Sage] power_mod(3, 1003, 101)

27
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Example 75. (review) The solutions to z?=9 (mod 35) are +3 and +17 (mod 35).

Example 76. Determine all solutions to 22 =4 (mod 105).
Solution. By the CRT:

=4 (mod 105)
<= 22=4 (mod3) and z?2=4 (mod5) and 2> =4 (mod7)
<= =42 (mod3) and =42 (mod5) and z==+2 (mod7)

At this point, we see that there are 23 = 8 solutions.

For instance, let us find the solution corresponding to =2 (mod 3), x =2 (mod5), z=—2 (mod 7):
2=25-7-[5-T)lqal +2:3-7-[(3-7)tys] —2-3-5-[(3-5) 21 47] = —70+ 42— 30 = —58 = 47
—1 1 1

Similarly, we find all eight solutions (note how the solutions pair up):

(mod 3) | (mod 5) | (mod 7) | (mod 105)
2 2 2 2

—2 —2 -2 -2

2 2 -2 47

—2 —2 2 —47

2 —2 2 23

—2 2 -2 —23

—2 2 2 37

2 —2 -2 —37

The complete list of solutions is: 2, +23, £37, 47
Silicon slave labor. Once we are comfortable doing it by hand, we can easily let Sage do the work for us:
Sage] crt([2,2,-2], [3,5,7])
47
Sage] solve_mod(x~2 == 4, 105)

[(37), (82), (58), (103), (2), (47), (23), (68)]

| Review: quadratic residues

Definition 77. An integer a is a quadratic residue modulo n if =22 (modn) for some .

Important note. Products of quadratic residues are quadratic residues.

Example 78. List all quadratic residues modulo 11.
Solution. We compute all squares: 02 =0, (£1)2=1, (£2)?=4, (£3)2=9, (£4)2=5, (£5)?=3. Hence, the
quadratic residues modulo 11 are 0,1, 3,4,5,9.
Important comment. Exactly half of the 10 nonzero residues are quadratic. Can you explain why?

[Hint. z°=9y? (modp) <= (r—y)(z+y)=0 (modp) <= z=yorx=—y (modp)]

Example 79. List all quadratic residues modulo 15.
Solution. We compute all squares modulo 15: 02 =0, (£1)%2=1, (£2)%2=4, (£3)%2=9, (£4)%2=1, (£5)?=10,
(£6)2=6, (£7)2=4. Hence, the quadratic residues modulo 15 are 0, 1,4, 6,9, 10.

Important comment. Among the ¢(15) =8 invertible residues, the quadratic ones are 1,4 (exactly a quarter).
Note that 15 is of the form n = pq with p, ¢ distinct primes.
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Theorem 80. Let p, ¢, r be distinct odd primes.

e The number of invertible residues modulo n is ¢(n).
fi . . . . ¢(p) _p-—1

e The number of invertible quadratic residues modulo p is =5

. . . . . —1qg—1
e The number of invertible quadratic residues modulo pgq is d)(ZQ) =2 5 1 5

. . . . . —1qg—17r—1
e The number of invertible quadratic residues modulo pgr is ¢(qu) =L 5 4 5 a 5
°

Proof.

e We already knew that the number of invertible residues modulo n is ¢(n).

e Think about squaring all residues modulo p to make a complete list of all quadratic residues. Let a2 be
one of the nonzero quadratic residues. As we observed earlier, 22 = a2 (mod p) has exactly 2 solutions,
meaning that exactly two residues (namely +a) square to a?. Hence, the number of invertible quadratic
residues modulo p is half the number of invertible residues modulo p.

e Again, think about squaring all residues modulo pq to make a complete list of all quadratic residues. Let a2
be one of the invertible quadratic residues. By the CRT, z2=a? (mod pq) has exactly 4 solutions (why is it
important that a is invertible here?!), meaning that exactly four residues square to a?. Hence, the number
of invertible quadratic residues modulo pq is a quarter of the number of invertible residues modulo pq.

e Spell out the situation modulo pgr! O

Comment. Make similar statements when one of the primes is equal to 2.
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