

Sage

Any serious cryptography involves computations that need to be done by a machine. Let us see how to use the open-source computer algebra system **Sage** to do basic computations for us.

Sage is freely available at sagemath.org. Instead of installing it locally (it's huge!) we can conveniently use it in the cloud at cocalc.com from any browser.

[For basic computations, you can also simply use the textbox on our course website.]

Sage is built as a **Python** library, so any Python code is valid. For starters, we will use it as a fancy calculator.

Example 73. Let's start with some basics.

```
Sage] 17 % 12
5
Sage] (1 + 5) % 2 # don't forget the brackets
0
Sage] inverse_mod(17, 23)
19
Sage] xgcd(17, 23)
(1, -4, 3)
Sage] -4*17 + 3*23
1
Sage] euler_phi(84)
24
```

Example 74. Why is the following bad?

```
Sage] 3^1003 % 101
```

27

The reason is that this computes 3^{1003} first, and then reduces that huge number modulo 101:

```
Sage] 3^1003
```

```
35695912125981779196042292013307897881066394884308000526952849942124372128361032287601\
01447396641767302556399781555972361067577371671671062036425358196474919874574608035466\
17047063989041820507144085408031748926871104815910218235498276622866724603402112436668\
09387969298949770468720050187071564942882735677962417251222021721836167242754312973216\
80102291029227131545307753863985171834477895265551139587894463150442112884933077598746\
0412516173477464286587885568673774760377090940027
```

We know how to efficiently avoid computing huge intermediate numbers (binary exponentiation!). Sage does the same if we instead use something like:

```
Sage] power_mod(3, 1003, 101)
```

27

Example 75. (review) The solutions to $x^2 \equiv 9 \pmod{35}$ are ± 3 and $\pm 17 \pmod{35}$.

Example 76. Determine all solutions to $x^2 \equiv 4 \pmod{105}$.

Solution. By the CRT:

$$\begin{aligned} x^2 &\equiv 4 \pmod{105} \\ \iff x^2 &\equiv 4 \pmod{3} \text{ and } x^2 \equiv 4 \pmod{5} \text{ and } x^2 \equiv 4 \pmod{7} \\ \iff x &\equiv \pm 2 \pmod{3} \text{ and } x \equiv \pm 2 \pmod{5} \text{ and } x \equiv \pm 2 \pmod{7} \end{aligned}$$

At this point, we see that there are $2^3 = 8$ solutions.

For instance, let us find the solution corresponding to $x \equiv 2 \pmod{3}$, $x \equiv 2 \pmod{5}$, $x \equiv -2 \pmod{7}$:

$$x \equiv 2 \cdot 5 \cdot 7 \cdot \underbrace{[(5 \cdot 7)^{-1}]_{\text{mod } 3}}_{-1} + 2 \cdot 3 \cdot 7 \cdot \underbrace{[(3 \cdot 7)^{-1}]_{\text{mod } 5}}_1 - 2 \cdot 3 \cdot 5 \cdot \underbrace{[(3 \cdot 5)^{-1}]_{\text{mod } 7}}_1 \equiv -70 + 42 - 30 = -58 \equiv 47$$

Similarly, we find all eight solutions (note how the solutions pair up):

(mod 3)	(mod 5)	(mod 7)	(mod 105)
2	2	2	2
-2	-2	-2	-2
2	2	-2	47
-2	-2	2	-47
2	-2	2	23
-2	2	-2	-23
-2	2	2	37
2	-2	-2	-37

The complete list of solutions is: $\pm 2, \pm 23, \pm 37, \pm 47$

Silicon slave labor. Once we are comfortable doing it by hand, we can easily let Sage do the work for us:

Sage] `crt([2,2,-2], [3,5,7])`

47

Sage] `solve_mod(x^2 == 4, 105)`

$[(37), (82), (58), (103), (2), (47), (23), (68)]$

Review: quadratic residues

Definition 77. An integer a is a **quadratic residue** modulo n if $a \equiv x^2 \pmod{n}$ for some x .

Important note. Products of quadratic residues are quadratic residues.

Example 78. List all quadratic residues modulo 11.

Solution. We compute all squares: $0^2 = 0$, $(\pm 1)^2 = 1$, $(\pm 2)^2 = 4$, $(\pm 3)^2 = 9$, $(\pm 4)^2 \equiv 5$, $(\pm 5)^2 \equiv 3$. Hence, the quadratic residues modulo 11 are $0, 1, 3, 4, 5, 9$.

Important comment. Exactly half of the 10 nonzero residues are quadratic. Can you explain why?

[Hint. $x^2 \equiv y^2 \pmod{p} \iff (x-y)(x+y) \equiv 0 \pmod{p} \iff x \equiv y \text{ or } x \equiv -y \pmod{p}$]

Example 79. List all quadratic residues modulo 15.

Solution. We compute all squares modulo 15: $0^2 = 0$, $(\pm 1)^2 = 1$, $(\pm 2)^2 = 4$, $(\pm 3)^2 = 9$, $(\pm 4)^2 \equiv 1$, $(\pm 5)^2 \equiv 10$, $(\pm 6)^2 \equiv 6$, $(\pm 7)^2 \equiv 4$. Hence, the quadratic residues modulo 15 are $0, 1, 4, 6, 9, 10$.

Important comment. Among the $\phi(15) = 8$ invertible residues, the quadratic ones are $1, 4$ (exactly a quarter). Note that 15 is of the form $n = pq$ with p, q distinct primes.

Theorem 80. Let p, q, r be distinct odd primes.

- The number of invertible residues modulo n is $\phi(n)$.
- The number of invertible quadratic residues modulo p is $\frac{\phi(p)}{2} = \frac{p-1}{2}$.
- The number of invertible quadratic residues modulo pq is $\frac{\phi(pq)}{4} = \frac{p-1}{2} \frac{q-1}{2}$.
- The number of invertible quadratic residues modulo pqr is $\frac{\phi(pqr)}{8} = \frac{p-1}{2} \frac{q-1}{2} \frac{r-1}{2}$.
- ...

Proof.

- We already knew that the number of invertible residues modulo n is $\phi(n)$.
- Think about squaring all residues modulo p to make a complete list of all quadratic residues. Let a^2 be one of the nonzero quadratic residues. As we observed earlier, $x^2 \equiv a^2 \pmod{p}$ has exactly 2 solutions, meaning that exactly two residues (namely $\pm a$) square to a^2 . Hence, the number of invertible quadratic residues modulo p is half the number of invertible residues modulo p .
- Again, think about squaring all residues modulo pq to make a complete list of all quadratic residues. Let a^2 be one of the invertible quadratic residues. By the CRT, $x^2 \equiv a^2 \pmod{pq}$ has exactly 4 solutions (why is it important that a is invertible here?!), meaning that exactly four residues square to a^2 . Hence, the number of invertible quadratic residues modulo pq is a quarter of the number of invertible residues modulo pq .
- Spell out the situation modulo pqr ! □

Comment. Make similar statements when one of the primes is equal to 2.