Notes for Lecture 10 Wed, 2/4/2026

\ Solving systems of differential equations

We can solve the system y’ = My exactly as we solved a,, 11 = Ma,,.

The only difference is that we replace each A™ (for characteristic root / eigenvalue \) with e*. In fact, as shown
in the examples below, we can translate back and forth at any stage.

solving systems of DEs) To solve vy’ = Muv, determine the eigenvectors of M.
g sy Yy Y g

e Each \-eigenvector v provides a solution: y(x) = ve’®

e If there are enough eigenvectors, these combine to the general solution.

In that case, we get a fundamental matrix (solution) ®(z) by placing each solution
vector into one column of ®(z).

Mz ysing any fundamental matrix ®(z):

e If desired, we can find the matrix exponential ¢
eMz=@(2)®(0)~L.

Note that e is the unique matrix solution to y’ = My, y(0) = I (the identity matrix).

Application: the unique solution to y’= My, y(0) = c is given by y(z) =eM7c.

Note. Unlike with M ™, it might not be clear what the matrix exponential e really is. One way to think

about it is that we are defining e as the solution to the IVP y’ = My, y(0) = I. This is equivalent to how

one can define the ordinary exponential e® as the solution to ¥/ =y, y(0) =1.

Mx

[In a little bit, we will also discuss how to think about the matrix exponential e using power series.]

Comment. If there are not enough eigenvectors, then we know what to do (at least in principle): instead of looking
only for solutions of the type y(z) = ve’®, we also need to look for solutions of the type y(z) = (vz + w)e ®.
Note that this can only happen if an eigenvalue is a repeated root of the characteristic polynomial.

Why does this work? Compare this to our method of solving systems of REs and for computing matrix powers
M™. The above conclusion about systems of DEs can be deduced along the same lines as what we did for REs:

e For instance, for the first part, let us look for solutions of y’ = My of the form y(z) = ver?,

Note that 3’ = Ave*® = A\y. Plugging into y’ = My, we find Ay = My.

Ax

In other words, y(z) =we"? is a solution if and only if v is a A-eigenvector of M.

e If &(x) is a fundamental matrix solution, then so is ¥(z) = ®(z)C for every constant matrix C. (Why?!)
Therefore, ¥(x) = ®(x)®(0) ! is a fundamental matrix solution with W (0) = ®(0)®(0) ! =1.

But eM? is defined to be the unique such solution, so that W(z) = eM®.
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Example 67. Let M:{ L6 }

(a)
(b)
()
(d)
()
(f)

-1 4

Determine the general solution to y' = My.

Determine a fundamental matrix solution to y’ = My.
Compute eM?,

Solve the initial value problem y’= My with y(0) :{ } }
Compute M™.

Solve a,,+1= Ma,, with aoz{ } }

Solution.

(a)

(b)

(c)

(d)

(e)

(f)

We determine the eigenvectors of M. The characteristic polynomial is:
det(M—AI):detq Sl 6 D:(71f/\)(4f>\)+6:>\273>\+2:(>\7 1)(A—2)

Hence, the eigenvalues are A=1 and A\ = 2.

e A=1: Solving { :? g ]v:O, we find that v:{ i’ ] is an eigenvector for A =1.

e A\ =2: Solving { :51)’ g ]'v: 0, we find that v:{ i ] is an eigenvector for A =2.
Hence, the general solution is Cl[ i’ ]e’c + CQ[ f }62””.
eT 621

. . . . © 2z
The corresponding fundamental matrix solution is ¢ :{ et 2e }

Note that ®(0) :{ i’ f } so that @(0)*1:[ _11 _32 ] It follows that

Mz —-1_
eMT=9(z)®(0) "+ = ot p2e

3e® 2e27 1 —2 ] | 3e®—2e2* —6e® 4 6e2®
-1 3 - ez_e2m _26m+362w .

. ) Mzl 1] | 3e —2e2* —GeT 4 6e2® 17 | —3e"+4e2
The solution to the IVP is y(z)=e [ 1 ]—{ o me _oeeigee || 1| T _erqoeee |

Note. If we hadn'’t already computed e?#, we would use the general solution and solve for the appropriate

values of C'; and C5. Do it that way as well!

From the first part, it follows that a,, 41 = Ma,, has general solution 01[ :1)’ ]+ CQ[ ? ]2".
(Note that 1" =1.)

The corresponding fundamental matrix solution is ®,, :[ 322" ]

1 2"

As above, @0:[ ‘;’ f }, so that @(0)_1:[ _11 _32 } and

M”—<I>nd>o‘1—[3 2-2HH 1 —2}_[3—2-271 —6—1—6-2”}

1 27 -1 3 1-2" —-243.2"
Important. Compare with our computation for ¢%
computation? Write down M " directly from eM<,

. Can you see how this was basically the same

: S _am[1]_[3=-2.2" —6+46-27|[1]_[ —3+4.2"
The (unique) solution is a, = M [1]—{ Lo _2_’_3_271][1]—[_1_,_2,?]-

Important. Again, compare with the earlier IVP! Without work, we can write down one from the other.
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We purposefully omit details of some computations in the next example to highlight how it
proceeds along the same lines as Example 58.

Important. In fact, we can translate back and forth (without additional computations) by simply replacing 3™
and (—2)™ by €3 and e 27,

Example 68. (extra practice) Let M = { g :170 }

(a) Determine the general solution to ¥y’ = My.
(b) Determine a fundamental matrix solution to y' = Muy.
(c) Compute M.

(d) Solve the initial value problem y’= My with y(0) = { (1) }
Solution. (See Example 58 for more details on the analogous computations.)

(a) Recall that each \-eigenvector v of M provides us with a solution: namely, y(z) = ve ?.

We computed earlier that { i ] is an eigenvector for A =3, and { 1 ] is an eigenvector for A = —2.
Hence, the general solution is Cl{ f ]639”—1—02[ 1 ]6_2’”.

9. eBm 672$
(b) The corresponding fundamental matrix solution is ®(x) = 3 Con |-
e e

[Note that our general solution is precisely @(w){ g‘ ]]
2

(c) Since @(o):[f }] we have @(0)*1:{ L) ] It follows that

]VIJ:_(I) P(0 —1_ 2'63I ei2m 1 -1 _ 2'831,76721, *2~63I+2672z
e = (x) ( ) - €3$ 6——2m -1 2 - €3m__>€4—2m __6315+>2€4,2$

Max

in the simple case x =0: e

Check. Let us verify the formula for e MO:{ 2-1 -2+2 ]:[ (1) (1) ]

1—-1 —1+42

_92.e3% 4 2¢—2

— €37 4 22 .

(d) The solution to the IVP is y(z) :eM“’[ (1) ]:{ } (the second column of e

Sage. We can compute the matrix exponential in Sage as follows:

>>> M = matrix([[8,-10],[5,-7]1]1)
>>> exp(M#*x)
(2e®®) —1)e(=22) _2 (62) _1)¢e(-22)
(e®®) —1)el=22) (52 _9)¢(—22)

Note that this indeed matches the result of our computation.

[By the way, the variable = is pre-defined as a symbolic variable in Sage. That's why, unlike for n in the
computation of M™, we did not need to use x = var(’x?’) first.]
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1 x 962z 3e® _3621
Example 69. Suppose that eM?=_—| ¢+
p S pp 10 3eT — 362w 9e® + 82w

(a) Without doing any computations, determine M ™.

(b) What is M?

(c) Without doing any computations, determine the eigenvalues and eigenvectors of M.

(d) From those, write down a simple fundamental matrix solution to y'= My.

(e) From that fundamental matrix solution, how can we compute eMT? (1f we didn't know it already...)
(f) Having computed e**, what is a simple check that we can (should!) make?

Solution.

(a) Since e® and €2 correspond to eigenvalues 1 and 2, we just need to replace these by 1" =1 and 2":

n_ 1[1+49.27 3-3.27
10| 3-3-27 9427

(b) We can simply set n =1 in our formula for M", to get M:i{

10

19 -3
-3 11 |

Max Qm)-

(c) The eigenvalues are 1 and 2 (because e'* contains the exponentials e® and e

Looking at the coefficients of e® in the first column of e, we see that { £1)> ] is a l-eigenvector.

[We can also look the second column of ¢, to obtain [ g ] which is a multiple and thus equivalent.]

Likewise, by looking at the coefficients of €27 we see that [ 33 ] or, equivalently, [ A

} is a 2-eigenvector.

Comment. To see where this is coming from, keep in mind that, associated to a \-eigenvector v, we
have the corresponding solution y(z) = ve ™ of the DE 4y’ = My. On the other hand, the columns of
eM? are solutions to that DE and, therefore, must be linear combinations of these ve*”.

1
3
general solutions consists of the linear combinations of these two).

(d) From the eigenvalues and eigenvectors, we know that { ]em and [ 713 ]62“3 are solutions (and that the

e® —3e2?*

Selecting these as the columns, we obtain the fundamental matrix solution ®(z) :{ 30r o2

Comment. The fundamental refers to the fact that the columns combine to the general solution.

The matrix solution means that ®(x) itself satisfies the DE: namely, we have ®' = M ®. That this is the
case is a consequence of matrix multiplication (namely, say, the second column of M ® is defined to be
M times the second column of ®; but that column is a vector solution and therefore solves the DE).

(e) We can compute eM® as eM* = & (2)P(0) 1.

If &(x) :{ 366‘1 76326121 ] then ®(0) :[ ;’ 713 } and, hence, ®(0)~! :%{ 713 ‘;’ ] It follows that

3e® 2% 10l =3 1| 10

T —3e%* | 1[ 1 3 1
I\/[x:q) d(0 —1_ € _
€ (CL‘) () 36.7:_3623: 96m+62m

e” 4+ 09e2T  3eT — 327 ]

(f) We can check that eM® equals the identity matrix if we set = = 0:

1

10| 3e® — 32T Qe 4 2 Y10/ 3-3 941 01

€@ 4 9e2® 3ew—3e21 2=0 1[1+9 3—3}_[1 0}

This check does not require much effort and can even be done in our head while writing down e%_ There
is really no excuse for not doing it!
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