Notes for Lecture 12 Mon, 2/9/2026

‘ Equilibrium solutions

dx

(20, Yo) is an equilibrium point of the system — = f(z,y), %: g(z,y) if

f(z0,90)=0 and g(zo, yo) =0.

In that case, we have the constant (equilibrium) solution z(t) =z, y(t) = yo.

Comment. Equilibrium points are also called critical points (or stationary points or rest points).

In a phase portrait, the equilibrium solutions are just a single point.

Recall that every other solution (z(t), y(t)) corresponds to a curve (parametrized by t), called the trajectory of
the solution (and we can adorn it with an arrow that indicates the direction of the “flow" of the solution).

We can learn a lot from how solutions behave near equilibrium points.

An equilibrium point is called:
e stable if all nearby solutions remain close to the equilibrium point;
e asymptotically stable if all nearby solutions remain close and “flow into” the equilibrium;

e unstable if it is not stable (some nearby solutions “flow away” from the equilibrium).

Comment. Note that asymptotically stable is a stronger condition than stable. A typical example of a stable,
but not asymptotically stable, equilibrium point is one where nearby solutions loop around the equilibrium point
without coming closer to it.

Advanced comment. For asymptotically stable, we kept the condition that nearby solutions remain close because
there are “weird" instances where trajectories come arbitrarily close to the equilibrium, then “flow away” but
eventually “flow into” (this would constitute an unstable equilibrium point).

Example 76. (cont’d) Consider again the system %: z-(y—1), %: y-(x—1).
(a) Determine the equilibrium points.
(b) Using the phase portrait from Example 75, classify the stability of each equilibrium point.

Solution.

(a) We solve z(y —1) =0 (thatis, z=0 or y=1) and y(x — 1) =0 (that is, =1 or y =0).
We conclude that the equilibrium points are (0,0) and (1, 1).

(b) (0,0) is asymptotically stable (because all nearby solutions “flow into” (0, 0)).
(1,1) is unstable (because some nearby solutions “flow away” from (1,1)).
Comment. We will soon learn how to determine stability without the need for a plot.

Comment. If you look carefully at the phase portrait near (1, 1), you can see that certain solutions get
attracted at first to (1, 1) and then “flow away” at the last moment. This suggests that there is a single
trajectory which actually “flows into” (1,1). This constellation is typical and is called a saddle point.
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\ Phase portraits of autonomous linear differential equations

Example 77. Consider the system

()
(b)
(c)

de
dt

dy

T =4x —2y.

Y —oT
Determine the general solution.
Make a phase portrait. Can you connect it with the general solution?

Determine all equilibrium points and their stability.

Solution.

(a)

(b)

/
Note that we can write this is in matrix form as [ z } = M{ Z } with M :{ _45 _12 }

M has —1-eigenvector [ }1 } as well as —6-eigenvector [ _11 }

Hence, the general solution is [ ggg }:Cl{ i }e_t—}—Cz[ _11 }6_6’5.

We can have Sage make such a plot for us:

>>> x,y = var(’x y?)
streamline_plot ((-5%x+y,4*x-2%y), (x,-4,4), (y,-4,4))

(<)

Question. In our plot, we also highlighted two lines
through the origin. Can you explain their signifi-

cance?

Explanation. The lines correspond to the special
solutions Cl[ 411 }e‘t (green) and C’Q[ _11 }e_ﬁt
(orange). For each, the trajectories consist of points
that are multiples of the vectors [ i } and [ _11 },
respectively.

Note that each such solution starts at a point on

)

.

one of the lines and then “flows” into the origin.
(Because e~ and e~ %" approach zero for large t.)

Question. Consider a point like (4,4). Can you explain why the trajectory through that point doesn’t go
somewhat straight to (0,0) but rather flows nearly parallel the orange line towards the green line?

Explanation. A solution through (4, 4) is of the form [ Zgg } = Cl{ i }e*t + CQ|: _11 }6767& (like any
other solution). Note that, if we increase ¢, then e~ 6% becomes small much faster than e .

As a consequence, we quickly get [ 58 } =~ Cl[ i }e—t, where the right-hand side is on the green line.
The only equilibrium point is (0,0) and it is asymptotically stable.

We can see this from the phase portrait but we can also determine it from the DE and our solution: first,
solving y — 5z =0 and 4z — 2y = 0 we only get the unique solution z =0, y =0, which means that only
(0,0) is an equilibrium point. On the other hand, the general solution shows that every solution approaches
(0,0) as t— 0o because both et and e~ approach 0.

In general. This is typical: if both eigenvalues are negative, then the equilibrium is asymptotically stable.
If at least one eigenvalue is positive, then the equilibrium is unstable.
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