Notes for Lecture 1 Mon, 1/12/2026

A crash course in linear algebra

. .. 123
Example 1. A typical 2 x 3 matrix is { 156 }

? } and row vectors like [ 1 2 3 ].

It is composed of column vectors like [

Matrices (and vectors) of the same dimensions can be added and multiplied by a scalar:
. 123 10 2 225 123 3 6 9
F°““Stance’{4 5 6}4_[2 3 -1 ]_[6 8 5]°r3'[4 5 6}_[ 12 15 18]'

Remark. More generally, a vector space is an abstraction of a collection of objects that can be
added and scaled: numbers, lists of numbers (like the above row and column vectors), arrays of
numbers (like the above matrices), arrows, functions, polynomials, differential operators, solutions
to homogeneous linear differential equations, ...

Example 2. The transpose A” of A is obtained by interchanging roles of rows and columns.

317 _
6

ot N

1
4

For instance. [ 2 5
3 6

Example 3. Matrices of appropriate dimensions can also be multiplied.

x
This is based on the multiplication [a b ¢ ]| y |=ax+by+ cz of row and column vectors.
z

1 0
. 1 -1 1 _[4 -3
For instance. {2 1 3}[ -1 1 }_{7 _5}
2 -2
In general, we can multiply a m X n matrix A with a n X r matrix B to get a m X r matrix AB.

column
Its entry in row ¢ and column j is defined to be (A B);; = (row % of A)[ j }
of B

Comment. One way to think about the multiplication Ax is that the resulting vector is a linear combination of
the columns of A with coefficients from x. Similarly, we can think of xTA as a combination of the rows of A.

Some nice properties of matrix multiplication are:

e There is an n X n identity matrix I (all entries are zero except the diagonal ones which are 1). It satisfies

Al=A and JA=A.
e The associative law A(BC') = (AB)C holds. Hence, we can write A BC' without ambiguity.

e The distributive laws including A(B+ C)=AB+ AC hold.

eramole . | 3 || 3 J# |5 ][00

31 1 -1 |10
ExampIeS.{2 1“2 3 ]—{01]

On the RHS we have the identity matrix, usually denoted I or I3 (since it's the 2 x 2 identity matrix here).

, so we have no commutative law.

-1 -1
Hence, the two matrices on the left are inverses of each other: [ g i } :{ 712 ;1 }, [ 712 ;1 } :{ g } }
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The inverse A~! of a matrix A is characterized by A='A=1 and AA~1=1.

Example 6. The following formula immediately gives us the inverse of a 2 x 2 matrix (if it exists).
It is worth remembering]!

|:a b :|_1_ : |: ! _b} provided that ad —bc#0
c d —m —C a —

Let's check that! ! [ d —b M

ad—bc| —c a

o

_ 1 ad —bec 0 -7
ad —be 0 —cb+tad 2

In particular, a 2 X 2 matrix

b
d
CCL } is invertible <= ad — bc#0.

QU

Recall that this is the determinant: det([ CCL Z ]) =ad—be.

| det(A)=0 <= A is not invertible |

7.2171 — 2.2172 =3. . 7T =2 Tl | 3 .
Example 7. The system 91+ 29 = 5 is equivalent to [ 9 1 o |71 5| Solve it.
Solution. Multiplying (from the left!) by [ ; 712 }_1:%[ j2 3 } produces [ 2 }:%[ j2 3 }[ 2 }:%[ ;3 },

which gives the solution of the original equations.

Example 8. (homework) Solve the system 39;1 :243;2 i 1 1 (using a matrix inverse).
1 2 = —
Solution. The equations are equivalent to 12 1 |_| 1
’ 3 4 b} -1 |
—1
Mutsiing by | 5 3| =] %y 3 Joroduess [ [=—z & 2 [ A ]l A )
r1+2x9 =1 . ..
Example 9. (homework) Solve the system 321+ dgro — 2 (using a matrix inverse).
1 2 =
Solution. The equations are equivalent to 12 1 |_| 1
’ 3 4 b} 2|
—1
R e E AR A

Comment. In hindsight, can you see this solution by staring at the equations?

Comment. Note how we can reuse the matrix inverse from the previous example.

The determinant of A, written as det(A) or |A], is a number with the property that:

det(A)#0 <= A is invertible
<= Ax=0>b has a (unique) solution x for all b
<= Az =0 is only solved by =0

Example 10. det([ CC‘ Z D =ad — bc, which appeared in the formula for the inverse.
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Notes for Lecture 2 Wed, 1/14/2026
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1 1
Example 11. (review) [1 2 3 ]| 2 |=[14 | whereas| 2 |[1 2 3 |=
3 3

Review: Examples of differential equations we can solve

Let's start with one of the simplest (and most fundamental) differential equations (DE). It is first-
order (only a first derivative) and linear with constant coefficients.

Example 12. Solve 3y’ =3y.

Solution. y(z)=Ce3*

Check. Indeed, if y(z) = Ce3?, then y/(z) =3Ce3* =3y(x).

Comment. Recall we can always easily check whether a function solves a differential equation. This means that
(although you might be unfamiliar with the techniques for solving) you can use computer algebra systems like
Sage to solve differential equations without trust issues.

To describe a unique solution, additional constraints need to be imposed.

Example 13. Solve the initial value problem (IVP) y'=3y, y(0)=5.

Solution. This has the unique solution y(x) = 5e3%.

The following is a nonlinear differential equation. In general, such equations are much more
complicated than linear ones. We can solve this particular one because it is separable.

Example 14. Solve 3y’ = x>

Solution. This DE is separable: %dy =z dz. Integrating, we find —% = éajz +C.

Hence, y = v 2
’ - T — —
sz2 4 C D —x
[Here, D = —2C but that relationship doesn't matter; it only matters that the solution has a free parameter.]

Note. Note that we did not find the solution y =0 (lost when dividing by 3?). It is called a singular solution
because it is not part of the general solution (the one-parameter family found above). [Although, we can obtain
it from the general solution by letting D — 00.]

Check. Compute y’ and verify that the DE is indeed satisfied.
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Review: Linear DEs

Linear DEs of order n are those that can be written in the form

y™ 4 Py _1(2) y" Y 4 4 Pi(z)y + Po(z)y = f(z).

The corresponding homogeneous linear DE is the DE

y ™ 4 Pooa(2) g o Pr(a)y’ + Po(x)y =0,

and it plays an important role in solving the original linear DE.

Important. Note that a linear DE is homogeneous if and only if the zero function y(z) =0 is a solution.

In terms of D:d%, the original DE becomes: Ly = f(x) where L is the differential operator

L=D"+P, 1(x)D" '+ ...+ Pi(x)D + Py(x).

The corresponding homogeneous linear DE is Ly =0.

Linear DEs have a lot of structure that makes it possible to understand them more deeply. Most
notably, their general solution always has the following structure:

(general solution of linear DEs) For a linear DE Ly = f(x) of order n, the general solution
always takes the form

y(x) = yp(z) + Cry1(w) + ... + Cryn(w),

where y,, is any single solution (called a particular solution) and y1, 2, ..., ¥, are solutions to
the corresponding homogeneous linear DE Ly =0.

Comment. If the linear DE is already homogeneous, then the zero function y(z) =0 is a solution and we can
use yp, = 0. In that case, the general solution is of the form y(z) = Ciy1 4+ Cay2 + --- + Cpyn.

Why? The key to this is that the differential operator L is linear, meaning that, for any functions f1(z), fao(x)
and any constants c1, c2, we have

Licifi(z) + e2fa(x)) = erL(f1(x)) + c2L( fa(x))-

If this is not clear, consider first a case like L = D™ or work through the next example for the order 2 case.

Example 15. (extra) Suppose that L= D?+ P(z)D + Q(x). Verify that the operator L is linear.
Solution. We need to show that the operator L satisfies
L(c1fi(z) + cafa(z)) = c1 L(f1(z)) + c2L(f2(x))
for any functions fi(x), fa(z) and any constants ¢, ca. Indeed:

L(cifi+eaf2) = (crfi+eafe)”+ Px)(cifi+caf2) + Qx)(c1f1 +cafo)

= ca{/{'+P@)[{+ Q) [1} +ca{ fo' + P(2) f2+ Q() f2}
= c1-Lfi4+co-Lfs
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Example 16. (extra) Consider the following DEs. If linear, write them in operator form as
Ly= f(x).

(@) y" =y

(b) 2%y +xy’ = (2 +4)y + x(2° +3)

(©) y'=y'+2y+2(1 -z —2?)

(d) y"=y'+2y+2(1 -z —y?)
Solution.

(a) This is a homogeneous linear DE:  (D? —z)y= 0
L f(=)
Note. This is known as the Airy equation, which we will meet again later. The general solution is of the
form Cry1(x) + Caya(x) for two special solutions y1, y2. [In the literature, one usually chooses functions
called Ai(x) and Bi(x) as y1 and ys. See: https://en.wikipedia.org/wiki/Airy_function]

(b) This is an inhomogeneous linear DE:  (2D?+ 2D — (22 +4))y = z(2? + 3)
L I (=)
Note. The corresponding homogeneous DE is an instance of the “modified Bessel equation” z2y’ +
zy’ — (w2 + a2)y =0, namely the case a = 2. Because they are important for applications (but cannot
be written in terms of familiar functions), people have introduced names for two special solutions of this
differential equation: I, (x) and K,(z) (called modified Bessel functions of the first and second kind).

It follows that the general solution of the modified Bessel equation is C11,(z) + CoK ().

In our case. The general solution of the homogeneous DE (which is the modified Bessel equation with
a =2)is C1lz2(x) + CoKa(x). On the other hand, we can (do it!) easily check (this is coming from
nowhere at this point!) that y, = —z is a particular solution to the original inhomogeneous DE.

It follows that the general solution to the original DE is C112(x) + CoKa(x) — x.

(c) This is an inhomogeneous linear DE: (D2 — D —2)y=2(1 —z — 2?)
L f(=)
Note. We will recall in Example 17 that the corresponding homogeneous DE (D2 — D —2)y=0 has
general solution C1e2* + Cae~%. On the other hand, we can check that y, = 22 is a particular solution
of the original inhomogeneous DE. (Do you recall from DE1 how to find this particular solution?)

x

It follows that the general solution to the original DE is 22 4+ C1e2* + Coe™*.

(d) This is not a linear DE because of the term y2. It cannot be written in the form Ly = f(x).

\ Homogeneous linear DEs with constant coefficients

Example 17. Find the general solution to 3"/ — v’ — 2y =0.

Solution. We recall from Differential Equations | that e”" solves this DE for the right choice of 7.
Plugging €”” into the DE, we get r2e"™® — re”™ — 2¢™% = (.
Equivalently, 72—+ —2=0. This is called the characteristic equation. lts solutions are r =2, —1.

This means we found the two solutions y; = €%, yo =e 7.

Since this a homogeneous linear DE, the general solution is y = C1e2* + Che ~*.

Solution. (operators) y”/ —y’ — 2y =0 is equivalent to (D? — D —2)y =0.

Note that D? — D — 2= (D — 2)(D + 1) is the characteristic polynomial.

It follows that we get solutions to (D —2)(D+ 1)y =0 from (D —2)y =0 and (D +1)y=0.

(D —2)y =0 is solved by y1 = e?*, and (D + 1)y =0 is solved by y2 =e~%; as in the previous solution.
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Notes for Lecture 3 Fri, 1/16/2026

Example 18. Solve y”" — 3y’ — 2y =0 with initial conditions y(0) =4, y'(0) =5.
Solution. From the previous example, we know that y(z) = C1e?* 4 Coe 2.
To match the initial conditions, we need to solve C1 +Cy =4, 2C1 — Cy=5. We find C1 =3, Cy=1.

Hence the solution is y(x) = 3e* + e~ *.

Set D = %. Every homogeneous linear DE with constant coefficients can be written as

p(D)y =0, where p(D) is a polynomial in D, called the characteristic polynomial.

For instance. v’ — y’ — 2y =0 is equivalent to Ly =0 with L =D? - D — 2.

Example 19. Find the general solution of v+ 7y” + 14y’ + 8y =0.
Solution. This DE is of the form p(D) y =0 with characteristic polynomial p(D) = D3+ 7D? + 14D + 8.

The characteristic polynomial factors as p(D) = (D +1)(D +2)(D +4). (Don't worry! You won't be asked to
factor cubic polynomials by hand.)

Hence, by the same argument as in Example 17, we find the solutions y1 =e ™7, yo =e 2%, y3=e~4*. That's
enough (independent!) solutions for a third-order DE.

The general solution therefore is y(x) = C1 e ™% + Cye 2% + Cge 4%,

This approach applies to any homogeneous linear DE with constant coefficients!

One issue is that roots might be repeated. In that case, we are currently missing solutions. The following result
provides the missing solutions.

Theorem 20. Consider the homogeneous linear DE with constant coefficients p(D)y = 0.

e If ris a root of the characteristic polynomial and if k is its multiplicity, then %k (inde-
pendent) solutions of the DE are given by z7¢™® for j=0,1,...,k — 1.

e Combining these solutions for all roots, gives the general solution.

This is because the order of the DE equals the degree of p(D), and a polynomial of degree n has (counting
with multiplicity) exactly n (possibly complex) roots.

In the complex case. If »r = a &£ b7 are roots of the characteristic polynomial and if k is its multiplicity, then
2k (independent) real solutions of the DE are given by z/e®®cos(bx) and z7e®*sin(bzx) for 7=0,1,....,k — 1.

Proof. Let r be a root of the characteristic polynomial of multiplicity k. Then p(D) = q(D) (D —r)*.

We need to find k solutions to the simpler DE (D — )y =0.
It is natural to look for solutions of the form y=c(x)e"".

[We know that ¢(z) =1 provides a solution. Note that this is the same idea as for variation of constants.]
Note that (D —r)[c(x)e"®] = (¢/(x)e"® + c(z)re”™®) — re(z)e™ = c/(z)e™.
Repeating, we get (D — 7)%[c(z)e"™] = (D — r)[c/(z)e"®] = ¢"'(x)e"™® and, eventually, (D — 7)F[c(x)e"™] =
B (z)er®,
In particular, (D — )%y =0 is solved by y = c(z)e"® if and only if ¢*)(z) =0.

The DE c(k)(x) =0 is clearly solved by =7 for =0, 1, ...,k — 1, and it follows that z:7e”” solves the original DE. O

Example 21. Find the general solution of "/ =0.
Solution. We know from Calculus that the general solution is y(z) = C; + Cyx + C3 x2.

Solution.' The characteristic polynomial p(D) = D3 has roots 0, 0, 0. By Theorem 20, we have the solutions
y(x) =27 e’ =7 for j=0,1,2, so that the general solution is y(z) = Cy + Oy x + C3 x2.
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Example 22. Find the general solution of y"' — 3" — 5y’ — 3y =0.
Solution. The characteristic polynomial p(D)= D3 — D? —5D — 3= (D —3)(D + 1)? has roots 3, —1, —1.
By Theorem 20, the general solution is y(z) = C1e3% + (Co + Csz)e™*.

Example 23. Find the general solution of 3"+ y=0.

Solution. The characteristic polynomials is p(D) = D? 41 =0 which has no solutions over the reals.
Over the complex numbers, by definition, the roots are ¢ and —i.

So the general solution is y(z) = Cy €'® + Cye ™%,

Solution. On the other hand, we easily check that y; = cos(z) and y2 =sin(x) are two solutions.

Hence, the general solution can also be written as y(x) = Dj cos(z) + D2 sin(z).

Important comment. That we have these two different representations is a consequence of Euler’s identity

e’ = cos(z) + i sin(z).
Note that e % = cos(z) — i sin(z).
On the other hand, cos(z) = %(e” + e~ ") and sin(z) = %(e” —e7iT),

[Recall that the first formula is an instance of Re(z) = %(z + Z) and the second of Im(z) :%(z —2)]

Example 24. Find the general solution of 3"/ — 4y’ + 13y =0.
Solution. The characteristic polynomial p(D) = D? — 4D + 13 has roots 2 + 3i, 2 — 3i.
Hence, the general solution is y(z) = C1e?*cos(3x) + C2e*Tsin(3x).

Note. e(2130)% = o22¢3ix — 027 (co5(3x) + i sin(3z))

Armin Straub
straub@southalabama.edu



Notes for Lecture 4 Wed, 1/21/2026

Example 25. (review) Find the general solution of y"' — 3y’ + 2y =0.
Solution. The characteristic polynomial p(D)= D3 —3D +2= (D —1)?(D +2) has roots 1,1, —2.
By Theorem 20, the general solution is y(x) = (C1 4+ Cax)e® + Coe22,

Example 26. (review) Consider the function y(z) =7z — 5x%e**. Find an operator p(D) such
that p(D)y=0.

Comment. This is the same as determining a homogeneous linear DE with constant coefficients solved by y(x).

Solution. In order for y(z) to be a solution of p(D)y =0, the characteristic roots must include 0,0, 4,4, 4.
The simplest choice for p(D) thus is p(D) = D?(D — 4)3.

‘ Inhomogeneous linear DEs: The method of undetermined coefficients |

The method of undetermined coefficients allows us to solve certain inhomogeneous linear DEs
Ly= f(x) with constant coefficients..

It works if f(x) is itself a solution of a homogeneous linear DE with constant coefficients (see previous example).

Example 27. Determine the general solution of y” + 4y =12x.
Solution. The DE is p(D)y = 12z with p(D) = D? + 4, which has roots 4-2i. Thus, the general solution is
y(x) = yp(x) + C1cos(2x) + Casin(2x). It remains to find a particular solution .
Since D?- (12x) =0, we apply D? to both sides of the DE to get the homogeneous DE D?(D? +4) -y =0.

Its general solution is C + Cox 4 C3cos(2z) 4+ Cysin(2z) and y;, must be of this form. Indeed, there must be a
particular solution of the simpler form y,, = C1 + Caz (because C3cos(2z) + Cysin(2x) can be added to any y,).

It remains to find appropriate values C'1, C5 such that y;’,’ + 4y, =12x. Since y;’,’ + 4y, =4C1+4Csx, comparing
coefficients yields 4C1 =0 and 4C> = 12, so that C; =0 and C'2 =3. In other words, y, = 3x.

Therefore, the general solution to the original DE is y(z) = 3z + Ccos(2z) + Casin(2x).

Example 28. Determine the general solution of 3" + 4y 4 4y = 3%,
Solution. The DE is p(D)y = e3% with p(D) = D? +4D + 4 = (D + 2)?, which has roots —2, —2. Thus, the
general solution is y(z) = y,(z) + (C1 + Caz)e 2%, It remains to find a particular solution y,,.
Since (D — 3)e3® =0, we apply (D — 3) to the DE to get the homogeneous DE (D — 3)(D + 2)%y =0.

Its general solution is (C1 + Cga:)e_h + C3e3% and yp must be of this form. Indeed, there must be a particular
solution of the simpler form y, = Ae3®.

!
To determine the value of C, we plug into the original DE: y;l’,’ + 4y1') +4yp,=(9+4-3+ 4)Ae3® = e3, Hence,
A=1/25. Therefore, the general solution to the original DE is y(x) = (Cq + Cox)e ™ 2* —0—% e3®,

Solution. (same, just shortened) In schematic form:

homogeneous DE | inhomogeneous part
characteristic roots —2,-2 3

solutions | e 2% ge~ 2 e37

This tells us that there exists a particular solution of the form y, = Ae3®. Then the general solution is
— —2x —2x
Z/—yp+C1e + Cazxe .

So far, we didn’t need to do any calculations (besides determining the roots)! However, we still need to determine

the value of A (by plugging into the DE as above), namely A=-1. For this reason, this approach is often called

. . . 25°
the method of undetermined coefficients.
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We found the following recipe for solving nonhomogeneous linear DEs with constant coefficients:

That approach works for p(D)y = f(x) whenever the right-hand side f(x) is the solution of some homogeneous
linear DE with constant coefficients: (D) f(z) =0

(method of undetermined coefficients) To find a particular solution ¥, to an inhomogeneous
linear DE with constant coefficients p(D)y = f(z):

e Determine the characteristic roots of the homogeneous DE and corresponding solutions.

e Find the roots of ¢(D) so that ¢(D) f(x)=0. [This does not work for all f(z).]

Let ¥p.1, Yp,2, ... be the additional solutions (when the roots are added to those of the
homogeneous DE).

Then there exist (unique) C; so that
Yp=C1ryp,1+ Cayp2+ ...

To find the values C;, we need to plug y,, into the original DE.

Why? To see that this approach works, note that applying ¢(D) to both sides of the inhomogeneous DE
p(D)y = f(x) results in ¢(D)p(D)y = 0 which is homogeneous. We already know that the solutions to the
homogeneous DE can be added to any particular solution y,. Therefore, we can focus only on the additional
solutions coming from the roots of ¢(D).

For which f(x) does this work? By Theorem 20, we know exactly which f(x) are solutions to homoge-
neous linear DEs with constant coefficients: these are linear combinations of exponentials 27¢"® (which includes
7 e*®cos(bx) and x7 e®Tsin(bx)).

Example 29. Determine the general solution of 3" + 4y’ 4 4y = Te =27

Solution. The homogeneous DE is y'/ + 4y’ + 4y = 0 (note that D? + 4D + 4 = (D + 2)?) and the
inhomogeneous part is 7e ™27,

homogeneous DE | inhomogeneous part

characteristic roots —2,-2 —2

solutions| e 2% ze 27 e 27

This tells us that there exists a particular solution of the form y, = Cz?e=27. To find the value of C, we plug
into the DE.

yp=C(—2x2 4 2z)e 2"
yy =C (422 — 8z +2)e 2@
!
yy + 4y, + 4y, =2Ce 2T =Te=22

2

It follows that C'= ;, so that y, Z;:c e~ 2%, Hence the general solution is

y(z) = (Cl + Caz + ;xQ)eh.

Example 30. Consider the DE 3" + 4y’ + 4y = 2e3% — 5e =27,
(a) What is the simplest form (with undetermined coefficients) of a particular solution?
(b) Determine a particular solution using our results from Examples 28 and 29.

(c) Determine the general solution.
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Solution.

(a) Note that D%+ 4D + 4= (D +2)2.

homogeneous DE | inhomogeneous part
characteristic roots —2,-2 3,—2

solutions | e 2% ge~ 2% €3 x2e—2%

Hence, there has to be a particular solution of the form y, = Ae3T 4 Brle 27,

To find the (unique) values of A and B, we can plug into the DE. Alternatively, we can break the problem
into two pieces as illustrated in the next part.

(b) Write the DE as Ly = 2e3* — 5 2% where L = D? 4+ 4D + 4. In Example 28 we found that y; = % e3®
satisfies Ly = €3%. Also, in Example 29 we found that yo = %1267% satisfies Ly = Te 2@,
By linearity, it follows that L(Ay; + By2) = ALy, + BLys= Ae3® 4 TBe 2,
To get a particular solution y,, of our DE, we need A=2 and 7B = —5.

5 2 5 _
Hence, Yp = 2y — 73,/2 =35 e3T _ 5‘7326 2z

Comment. Of course, if we hadn't previously solved Examples 28 and 29, we could have plugged the result
from the first part into the DE to determine the coefficients A and B. On the other hand, breaking the
inhomogeneous part (2e3* — 5 ~2%) up into pieces (here, 3% and e ~2%) can help keep things organized,
especially when working by hand.

(c) The general solution is % e3% — gx2672z + (C1 + Cax)e?™.

Example 31. Consider the DE y”" — 2y’ + y = 5sin(3x).
(a) What is the simplest form (with undetermined coefficients) of a particular solution?
(b) Determine a particular solution.
(c) Determine the general solution.

Solution. Note that D2 —2D + 1= (D —1)2.

homogeneous DE | inhomogeneous part
characteristic roots 1,1 +3:
solutions e” xe” cos(3x), sin(3z)

(a) This tells us that there exists a particular solution of the form y,, = A cos(3z) + B sin(3x).

(b) To find the values of A and B, we plug into the DE.
yp = —3Asin(3z) + 3B cos(3z)
yp = —9A cos(3z) — 9B sin(3x)
yp — 2yp+ yp = (—8A — 6B)cos(3z) + (6A — 8B)sin(3z) = 5sin(3x)

Equating the coefficients of cos(x), sin(x), we obtain the two equations —8A —6B =0 and 6A —8B =5.

Solving these, we find A= %, B= —% Accordingly, a particular solution is y, = % cos(3xz) — %sin(Bx).

= % cos(3x) — %sin(Sx) + (C1 4 Caox)e”.

(c) The general solution is y(z)
Example 32. Consider the DE y” — 2y’ + y = 5e?“sin(3z) + 7z e®. What is the simplest form
(with undetermined coefficients) of a particular solution?

Solution. Since D2 —2D+1= (D — 1)2, the characteristic roots are 1, 1. The roots for the inhomogeneous part
are 2+ 34,1, 1. Hence, there has to be a particular solution of the form y, = Ae?Pcos(3z) + Be?*sin(3x) +
Cxz2e® 4 Da3e”.

(We can then plug into the DE to determine the (unique) values of the coefficients A, B, C', D.)
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Example 33. (homework) What is the shape of a particular solution of vy +4y'+4y=xcos(z)?
Solution. The characteristic roots are —2, —2. The roots for the inhomogeneous part are 47, +i. Hence, there
has to be a particular solution of the form y, = (C1 + Caz)cos(x) + (C3 + Cyzx)sin(x).

Continuing to find a particular solution. To find the value of the C;'s, we plug into the DE.
yp = (Co+ C3+ Cyx)cos(x) + (Cy — C — Cox)sin(x)
yp = (2C4 — C1 — Cax)cos(x) + (—2C2 — C3 — Cyx)sin(x)
yp +4yp+4yp = (3C1 +4C2 4+ 4C3 + 2C4 + (3C2 + 4Cy)x)cos(x)
+ (—4C1 — 2024+ 3C3+4C, + (—4C2 + 3C4)x)sin(x) L cos(x).

Equating the coefficients of cos(x), « cos(z), sin(z), sin(x), we get the equations 3C"1 +4C2 + 4C3+2C4 =0,
3Co+4C4 =1, —4C1 —2C2+3C3+4C4 =0, —4C2+ 3C4=0.

Solving (this is tedious!), we find C1 = —%, Co= %, Cy= f%, Cy :%.
Hence, y, = (—% + %x)cos(az) + (—% + %x)sin(:c).
Armin Straub 11
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Notes for Lecture 5 Fri, 1/23/2026

Example 34. (review) What is the shape of a particular solution of 3" + 4y’ +4y=4e3*sin(2z) —
xsin(z).
Solution. The characteristic roots are —2, —2. The roots for the inhomogeneous part roots are 3 4= 24, +4, 4.
Hence, there has to be a particular solution of the form
yp = C1e3%cos(2z) + C2e3*sin(2z) + (C3 + Cyx)cos(z) + (Cs + Coz)sin(z).
Continuing to find a particular solution. To find the values of C1, ..., Cg, we plug into the DE. But this final

step is so boring that we don’t go through it here. Computers (currently?) cannot afford to be as selective; mine

obediently calculated: y, = —ie?’”"(ZOCOS(Qx) — 21sin(2z)) + % (—22+ 20z)cos(z) + (4 — 15x)sin(z))

841

| Sage \

In practice, we are happy to let a machine do tedious computations. Let us see how to use the
open-source computer algebra system Sage to do basic computations for us.

Sage is freely available at sagemath.org. Instead of installing it locally (it's huge!) we can conveniently use it
in the cloud at cocalc.com from any browser.
[For basic computations, you can also simply use the textbox on our course website.]

Sage is built as a Python library, so any Python code is valid. For starters, we will use it as a fancy calculator.

Example 35. To solve the differential equation vy’ + 4y’ + 4y =T7e 2%, as we did in Example 29,
we can use the following:

>>> x var(’x?)

>>> y = function(’y’) (x)

>>> desolve(diff(y,x,2) + 4*diff(y,x) + 4*xy == T*exp(-2*x), y)

% 22e(72%) 4 (Koo + Ky) e(=22)

This confirms, as we had found, that the general solution is y(x) = (Cl + Cox + gw2)6721.

Example 36. Similarly, Sage can solve initial value problems such as y” — v’ — 2y =0 with initial
conditions y(0) =4, y'(0) =5.

>>> x = var(’x?)

>>> y = function(’y’) (x)

>>> desolve(diff(y,x,2) - diff(y,x) - 2%y == 0, y, ics=[0,4,5])

3 6(27) 4 (—2)

This matches the (unique) solution y(x) = 3e2? + e~ % that we derived in Example 18.

Higher order. Unfortunately, the command desolve currently only works like this for differential equations

of first and second order. To likewise solve a third-order differential equation, we can use the function des-
" __

olve_laplace instead. For instance, to solve the IVP y’/ =3y — 4y with y(0) =1, y’(0) = —2, y”(0) =3, use
>>> desolve_laplace(diff(y,x,3) == 3*diff(y,x,2) - 4*y, y, ics=[0,1,-2,3])
ze22) _g @) 1 D (—a)

3
to find that the unique solution is y(x) = é(Sx —2)e?® geﬂ”.
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cocalc.com

| More on differential operators

Example 37. We have been factoring differential operators like D? +4D +4= (D +2)2.

Things become much more complicated when the coefficients are not constant!

For instance, the linear DE y’’ 4 4y’ 4+ 42y =0 can be written as Ly =0 with L = D? 4+ 4D + 4. However, in
general, such operators cannot be factored (unless we allow as coefficients functions in = that we are not familiar
with). [On the other hand, any ordinary polynomial can be factored over the complex numbers.]

One indication that things become much more complicated is that  and D do not commute: x D # Dx!!

Indeed, (z D) () = o f(x) while (Dx) f(2) =-L[a f(@)] = f(w) + o f(z) = (1+2 D) f(x).
This computation shows that, in fact, Dx=xD + 1.

Review. Linear DEs are those that can be written as Ly = f(x) where L is a linear differential
operator: namely,

L=pu(z)D" + pp-1(x)D" ' + ... + p1(x) D + po(2). (1)

Recall that the operators D and Dx are not the same: instead, Dx=xD + 1.
We say that an operator of the form (1) is in normal form.

For instance. z D is in normal form, whereas Dx is not in normal form. It follows from the previous example
that the normal form of Dx is D + 1.

Example 38. Let a =a(x) be some function.
(a) Write the operator Da in normal form [normal form means as in (1)].
(b) Write the operator D?a in normal form.

Solution.

(@) (Da)f(z)= d%[a(fﬂ) f(@)]=a'(z) f(z) +a(z) f'(z) = (a’ +aD) f(z)
Hence, Da=aD +a’'.

(b) (D%a)f(x) = 4la(2) f(@)] = 5£[0"(@) f(2) + al(@) f'(@)] = a"(2) (@) + 20" (@) (2) + a() f " (=)
=(a""+2a’'D +aD?) f(x)
Hence, D2a =aD?+2a’'D +a"".
Alternatively. We can also use Da=aD + a’ from the previous part and work with the operators directly:
D2?a=D(Da)=D(aD+a')=DaD + Da’ = D+a'D+a"=aD?+2a’ D +a".

Example 39. Suppose that a and b depend on x. Expand (D + a)(D + b) in normal form.
Solution. (D+a)(D+b)=D?+Db+aD +ab=D?+ (bD+b')+aD+ab=D?+ (a+b)D+ab+b’

Comment. Of course, if b is a constant, then b’ =0 and we just get the familiar expansion.
Comment. At this point, it is not surprising that, in general, (D +a)(D +b) # (D +b)(D + a).
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Example 40. Suppose we want to factor D> +pD+qas (D +a)(D+Db).  [p,q,a,bdepend on «]
(a) Spell out equations to find a and b.

(b) Find all factorizations of D?. [An obvious one is D?= D - D but there are others!]

Solution.
(a) Matching coefficients with (D +a)(D 4 b) = D?+ (a +b)D +ab+ b’ (we expanded this in the previous
example), we find that we need
p=a-+b, qg=ab+b

Equivalently, a=p — b and ¢ = (p — b)b+ b’. The latter is a nonlinear (!) DE for . Once solved for b,
we obtain a as a=p —b.

(b) This is the case p= ¢ =0. The DE for b becomes b’ = b.
Because it is separable (show all details!), we find that b(z) = i — or b(z) =0.

Since a = —b, we obtain the factorizations D2 = (D -G 1_ - )(D —}—ﬁ) and D2=D - D.

Our computations show that there are no further factorizations.

Comment. Note that this example illustrates that factorization of differential operators is not unique!

For instance, D?=D-D and D?= (D—&—é) . (D —l) (the case C'=0 above).

x
Comment. In general, the nonlinear DE for b does not have any polynomial or rational solution (or, in fact, any
solution that can be expressed in terms of functions that we are familiar with).
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Notes for Lecture 6 Mon, 1/26/2026

Solving linear recurrences with constant coefficients

\ Motivation: Fibonacci numbers

The numbers 0,1,1,2,3,5,8,13,21, 34, ... are called Fibonacci numbers.
They are defined by the recursion Fj, 1 =F,+ F,,_1 and Fy,=0, F;=1.

How fast are they growing?

Have a look at ratios of Fibonacci numbers: %: 2, g = 1.5, % ~ 1.667, %: 1.6, % = 1.625, % = 1.615,

34

O 1.619, ...
These ratios approach the golden ratio ¢ = 1+2\/5 =1.618...
In other words, it appears that lim %: 1+2\/g.

n—oo

We will soon understand where this is coming from.

We can derive all of that using the same ideas as in the case of linear differential equations. The
crucial observation that we can write the recursion in operator form:

Foi1=F,+F,_1 isequivalentto (N?—N —1)F,=0.

Here, N is the shift operator: Na,, = ay 1.

Comment. Recurrence equations are discrete analogs of differential equations.

For instance, recall that f/(z) = }}:mo%[f(:u—kh) — f(2)].

Setting h =1, we get the rough estimate f/(z)~ f(z+1) — f(z) so that D is (roughly) approximated by N — 1.

Example 41. Find the general solution to the recursion a,,4+1 = Ta,,.
Solution. Note that a,, =7a, _1=7-Tan_o="---="T"ay.
Hence, the general solution is a,, =C' - 7™.

Comment. This is analogous to y’ = 7y having the general solution y(z) = Ce™.

\ Solving recurrence equations \

Example 42. (“warmup”) Find the general solution to the recursion a,, 2= ay, 41+ 6a,.

Solution. The recursion can be written as p(N)a,, =0 where p(N)=N? — N — 6= (N — 3)(N +2).
Since (N — 3)ay, =0 has solution a,, = C'- 3", and since (N + 2)a,, =0 has solution a,, = C - (—2)" (compare
previous example), we conclude that the general solution is a,, = C1-3" + Cy - (—2)".

Comment. This must indeed be the general solution, because the two degrees of freedom C'1, Cy allow us to
match any initial conditions ag = A, a1 = B: the two equations C| + Co = A and 3C7 — 2C3 = B in matrix form

1 1 Cy || A : . : 1 1 —
are [ 3 o H C; }—[ s }, which always has a (unique) solution because det([ 3 o D =—-5%#0.
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Example 43. Let the sequence a,, be defined by a,,+2=a,+1+ 6a, and ag=1, a; =8.
(a) Determine the first few terms of the sequence.

(b) Find a formula for a,,.

(c) Determine lim 27+,

n—oo An

Solution.
(a) ag=aj1+6ap=14, ag=ag+ 6a; =62, ag =146, ...

(b) The recursion can be written as p(N)a,, =0 where p(N) = N? — N — 6 has roots 3, —2.
Hence, a, = C1 3™ 4+ C2 (—2)™ and we only need to figure out the two unknowns C4, C5. We can do
that using the two initial conditions: ag=C1+ C2=1, a; =3C7 — 2Cy =38.
Solving, we find C1 =2 and C3 = —1 so that, in conclusion, a, =2 3" — (—2)"™.
Comment. Such a formula is sometimes called a Binet-like formula (because it is of the same kind as
the Binet formula for the Fibonacci numbers that we can derive in the same manner).

. a .
(c) It follows from our formula that lim —“*L—3 (because |3| > |—2| so that 3" dominates (—2)").
n—oo Aan
To see this, we need to realize that, for large n, 3™ is much larger than (—2)" so that we have a,, ~2-3™
anir . 2-3"+

2.3n
Alternatively, to be very precise, we can observe that (by dividing each term by 3")

when n is large. Hence,

2 n
an+1_2'3”+1—(—2)“+1_2'3+2(_§) as n— oo 2.34.0_3
an  2:3"—(=2)" _2.1_< 2)” 2.1-0 7

3

Example 44. Consider the sequence a,, defined by a,, 1o =a, 11+ 2a, and ag=1, a; =8.
(a) Determine the first few terms of the sequence.

(b) Find a formula for a,,.

an+1

(c) Determine lim
n—oo Ap

Solution.
(a) a2=10, a3=26

(b) The recursion can be written as p(N)a,, =0 where p(N) = N? — N — 2 has roots 2, —1.
Hence, a, = C1 2™ 4+ C2 (—1)™ and we only need to figure out the two unknowns C1, C5. We can do
that using the two initial conditions: ag=C1+ Co=1, a1 =2C1 — Cy=38.
Solving, we find C'y =3 and Cy = —2 so that, in conclusion, a, =3 2" —2(—1)".

(c) It follows from our formula that lim %: 2 (because |2| > |—1] so that 2" dominates (—1)").
n— oo n

Comment. In fact, this already follows from a, = Cy 2" + C3 (—1)" provided that C; # 0. Since
an=C2(—1)" (the case C1 =0) is not compatible with ag =1, a; =8, we can conclude lim Antl_9

n—oo Qn

without computing the actual values of C'; and Cb.
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Notes for Lecture 7 Wed, 1/28/2026

Review. The recurrence a,, 1 = ba, has general solution a,,=C-5".

In operator form, the recurrence is (N — 5)a, =0, where p(N) =N — 5 is the characteristic polynomial. The
characteristic root 5 corresponds to the solution 5.

This is analogous to the case of DEs p(D)y =0 where a root r of p(D) corresponds to the solution e"”.

Example 45. (“warmup”) Find the general solution to the recursion a,, 12 =4a, 11 — 4an,.

Solution. The recursion can be written as p(N)a, =0 where p(N) = N? — 4N + 4 has roots 2, 2.

So a solution is 2™ and, from our discussion of DEs, it is probably not surprising that a second solution is n - 2™,
Hence, the general solution is a,, =C7-2"+ Co-n-2"=(C1+ Can) - 2™,

Comment. This is analogous to (D — 2)%y’ =0 having the general solution y(z) = (C1 + Cox)e?®.

Check! Let's check that a,, =n - 2" indeed satisfies the recursion (N — 2)2a,, =0.
(N—=2)n-2"=(n+1)2"+t —2n.2"=27+1 5o that (N —2)?n-2"= (N —2)2"+1=0.

Combined, we obtain the following analog of Theorem 20 for recurrence equations (RE):

Comment. Sequences that are solutions to such recurrences are called constant recursive or C-finite.

Theorem 46. Consider the homogeneous linear RE with constant coefficients p(N')a,, =0.

e If ris a root of the characteristic polynomial and if & is its multiplicity, then & (inde-
pendent) solutions of the RE are given by n/r™ for j=0,1,....,k — 1.

e Combining these solutions for all roots, gives the general solution.

Moreover. If r is the sole largest root by absolute value among the roots contributing to a,,, then a,, ~Cr™
(if  is not repeated—what if it is?) for large n. In particular, it follows that

. Q41
lim =2t —p
n—oo QAan

Advanced comment. Things can get weird if there are several roots of the same absolute value. Consider, for
instance, the case a,, = 2" + (—2)™. Can you see that, in this case, the limit lim,,_, a;“ doesn’t even exist?

n

Example 47. Find the general solution to the recursion a,,4+3=2ay,+2+ an4+1— 2ay.

Solution. The recursion can be written as p(N)a, =0 where p(N) = N3 —2N? — N + 2 has roots 2, 1, —1.
(Here, we may use some help from a computer algebra system to find the roots.)

Hence, the general solution is a, =C7-2" + Ca+ Cs- (—1)"™.

Example 48. Find the general solution to the recursion a,,4+3=3a,+2 —4a,.

Solution. The recursion can be written as p(N)a,, =0 where p(N) = N3 —3N? +4 has roots 2,2, —1. (Again,
we may use some help from a computer algebra system to find the roots.)

Hence, the general solution is a,, = (C1 + Can) - 2™ + C5- (—1)™.
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Theorem 49. (Binet’s formula) F,, = %[( ! +2\/§ )n - ( : _2\/5 )”]

Proof. The recursion F, 11 = F}, + F},, _1 can be written as p(N)a,, =0 where p(N)= N2 — N — 1 has roots

1-V5 ~ —0.618.

)qz#% 1618, Ap=-—

Hence, F,, = C1- AT 4+ C2- A5 and we only need to figure out the two unknowns C, C5. We can do that using

! _ !
the two initial conditions: Fy=C + C2 =0, Fy=C- 5 4 0y LB 2y,
. . 1 1 . . 1 .
Solving, we find C; =7 and Cy = 7 so that, in conclusion, F}, :ﬁ(kn — AB), as claimed. O

n
Comment. For large n, F, ~—= AT (because A becomes very small). In fact, F, = round(% (H52) )

Back to the quotient of Fibonacci numbers. In particular, because A7 dominates A5, it is now transparent

that the ratios F;“ approach A1 :% ~ 1.618. To be precise, note that

1 yn+1_ yn+1 22 )"

Fao_ OTINT) oy M-n(R) M0y

F,  _lLn_\n B o\ A2\ 1-0 7%
n (AT = A5) L 1*(71)

In fact, it follows from A2 < O that the ratios % approach )\ in the alternating fashion that we observed

. . n
numerically earlier. Can you see that?

Example 50. Consider the sequence a,, defined by a, 1o = 4a,+1 + 9a, and ag =1, a; = 2.

. . a 1
Determine lim —t1
n—oo Anp

Solution. The recursion can be written as p(N)a,, =0 where p(N) = N? — 4N — 9 has roots
—1.6056. Both roots have to be involved in the solution in order to get integer values.

We conclude that lim 271 —24 /13 ~5.6056 (because |5.6056| > |—1.6056]).

n—oo an

4+ 2\@ ~ 5.6056,

Example 51. (extra) Consider the sequence a,, defined by a, 42 = 2a,+1 + 4a, and ag =0,
o . . a/n+1
a1 =1. Determine lim .
n—oo Ap

First few terms of sequence. 0,1, 2,8, 24, 80, 256, 832, ...

These are actually related to Fibonacci numbers. Indeed, a,, = 2™ ~'F},,. Can you prove this directly from the
recursions? Alternatively, this follows from comparing the Binet-like formulas.

Solution. Proceeding as in the previous example, we find lim Gntl + /5~ 3.23607.

n—oo an ) "
Comment. With just a little more work, we find the Binet-like formula a, =+ “5)2;3“ — Vo
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Crash course: Eigenvalues and eigenvectors

|If Axz=Ax (and x #0), then x is an eigenvector of A with eigenvalue \ (just a number). |

Note that, for the equation Az = Ax to make sense, A needs to be a square matrix (i.e. n X n).
Key observation:
Ax=)\x
— Az - x=0
— (A-A)x=0

This homogeneous system has a nontrivial solution x if and only if det(A — \I)=0.

To find eigenvectors and eigenvalues of A:

(a) First, find the eigenvalues A by solving det(A — AI') =0.

det(A — A1) is a polynomial in )\, called the characteristic polynomial of A.

(b) Then, for each eigenvalue A, find corresponding eigenvectors by solving (A — AI)x =0.

Example 52. Determine the eigenvalues and eigenvectors of A= [ g __170 }

Solution. The characteristic polynomial is:
det(A — A1) :det([ SN 10 D = (8= M\)(=T—A\)+50=X12—XA—6=(\—3)(A+2)

Hence, the eigenvalues are A=3 and A = —2.

e To find an eigenvector for A =3, we need to solve [ 5 —10 }w =0.

Hence, & = [ 2

1 } is an eigenvector for A = 3.

e To find an eigenvector for A = —2, we need to solve [ 150 __150 }az =0.

Hence, x :{ i } is an eigenvector for A\ = —2.

chec [3 20 2]=[ 4] =1 ma[3 0 ][H]] 2]=-2 1]

On the other hand, a random other vector like [ ; } is not an eigenvector: [ 2 :170 ][ ; }:{ —12 }:ﬁ)\[ ; }

Example 53. (homework) Determine the eigenvalues and eigenvectors of A:[ 1 :2 ]

Solution. (final answer only) x :{ f } is an eigenvector for A= —2, and m:[ :1)’ } is an eigenvector for A= —1.
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Notes for Lecture 8 Fri, 1/30/2026

\ Preview: A system of recurrence equations equivalent to the Fibonacci recurrence

Example 54. We model rabbit reproduction as follows.

Each month, every pair of adult rabbits pro- -

duces one pair of baby rabbit as offspring. |adu|t rabbit| 1 baby rabbit
Meanwhile, it takes baby rabbits one month Y —

to mature to adults. 1

Comment. In this simplified model, rabbits always come in male/female pairs and no rabbits die. Though these
features might make it sound fairly useless, the model may have some merit when describing populations under
ideal conditions (unlimited resources) and over short time (no deaths).

Historical comment. The question how many rabbits there are after one year, when starting out with a pair of
baby rabbits is famously included in the 1202 textbook of the Italian mathematician Leonardo of Pisa, known
as Fibonacci.

If we start with one baby rabbit pair, how many adult rabbit pairs are there after n months?

Solution. Let a,, be the number of adult rabbit pairs after n months. Likewise, b,, is the number of baby rabbit
pairs. The transition from one month to the next is given by a,,+1=a, + b, and by, 41 =a,. Using b, =a, 1
(from the second equation) in the first equation, we obtain an4+1=an+ an_1.

The initial conditions are ag=0 and a1 =1 (the latter follows from bg=1).
It follows that the number b,, of adult rabbit pairs are precisely the Fibonacci numbers F,.

Comment. Note that the transition from one month to the next is described by in matrix-vector form as

Qn+1 — an"'bn _ 11 an
bn+1 an 10 bn '
Writing an:{ ‘;: }, this becomes a1 :{ 1 (1) ]an with aoz[ (1] }

Consequently, a,n:{ 1 é rao:[ 1 (1) r{ (1) }

Looking ahead. Can you see how, starting with the Fibonacci recurrence F), o = F,, 11 + F},
we can arrive at this same system?

So|uti0n. Set an:{ F;+l } Then a,n+1:|: };‘711? j| :|: Frz}l len }:{ i (1) iH F;j»l j| :|: 1 (1) }an
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Systems of recurrence equations

Example 55. (review) Consider the sequence a,, defined by a,, 2 = 4a,, — 3a,4+1 and ag =1,

. . a 1
a1 =2. Determine lim —2*1

n—oo Ap

Solution. The recursion can be written as p(N)a,, =0 where p(N) = N2+ 3N — 4 has roots 1, —4. Hence, the
general solution is a,, = C1 + Cy - (—4)™. We can see that both roots have to be involved in the solution (in other
words, C1 # 0 and C # 0) because a,, = C1 and a,, = C - (—4)"™ are not consistent with the initial conditions.

We conclude that lim 2tl—_4 (because |—4| > |1]).

n—oo Qn

Example 56. Write the (second-order) RE a,,42=4a,, — 3a,,+1, with ag=1, a; =2, as a system
of (first-order) recurrences.
Solution. Write b,, = a4 1.

any1="bn

Then, a,,42=4a, — 3a, 41 translates into the first-order system {bn+1 —da,, — 3b,"

a . . . 0o 1 . 1
Let a,, = b: ] Then, in matrix form, the RE is a,, 41 :[ 4 3 }an, with aoz{ 5 }
Equivalently. Write a,, = [ aa” ] Then we obtain the above system as
n—+1

An

an+1 ]:[ An 41
An+1

an+2 4an_3an+1

5 AL 8 e w2}

5 rao = [ 2 _13 r{ ; } Solving (systems of) REs is equivalent to

QAn+1 :[

Comment. It follows that a,, =
computing powers of matrices!

An+1

n

Comment. We could also write a,, = (with the order of the entries reversed). In that case, the system is

[ =34 ans1 ] [ -3 4 [2

s R ) e
Comment. Recall that the characteristic polynomial of a matrix M is det(M — XI'). Compute the characteristic
polynomial of both M = [ 2 _13 } and M :[ _13 g } In both cases, we get A2 4+ 3\ — 4, which matches the

An 2 _ 4an_3an+1
an+1 An+1

An+1 :|:

polynomial p(NN) (also called characteristic polynomial!) in the previous example. This will always happen and
explains why both are referred to as the characteristic polynomial.

Example 57. Write a,, 13— 4a,, 12+ @41+ 6a, =0 as a system of (first-order) recurrences.

an
Solution. Write a,,=| an41 |- Then we obtain the system
An 42
an4+1 an+1 0 1 0 An 0 1 0
Ap41=| An42 - An+2 - 0 0 1 An+1 - 0 0 1 an,.
An+3 4an4+2—ap4+1—6an —6 —1 4 An 42 —6 —1 4

In summary, the RE in matrix form is a,,+1 = Ma,, with M the matrix above.

Important comment. Given a first-order system a,,+1 = Ma, it is clear that the solution satisfies a,, = M "ay.

If you know how to compute matrix powers M ™, this means you can solve recurrences! On the other hand, we
will proceed the other way around. We solve the recurrence and then use that to determine M ™.
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\ Solving systems of recurrence equations

The following summarizes how we can solve systems of recurrence equations using eigenvectors.
As a bonus, we obtain a way to compute matrix powers.

Each step is spelled out in Example 58 below.

(solving systems of REs) To solve a,,+1 = Ma,, determine the eigenvectors of M.
e Each \-eigenvector v provides a solution: a,, = v A" [assuming that A = 0]

e If there are enough eigenvectors, these combine to the general solution.

In that case, we get a fundamental matrix (solution) ®,, by placing each solution
vector into one column of ®,,.

e If desired, we can compute the matrix powers M ™ using any fundamental matrix ®,, as
M"=d,0,".

Note that M™ is the unique matrix solution to a,4+1= Ma, with ag =1 (the identity matrix).

Application: the unique solution to a,,.1 = Ma,, ay=c is given by a,, = M"c.

Why? If a,,=vA\" for a A-eigenvector v, then a,, 1= v\t and Ma,, = Mo\" = v - A\ = v\ 1,
Where is this coming from? When solving single linear recurrences, we found that the basic solutions are of the
form cr™ where r #£0 is a root of the characteristic polynomials. To solve a,, 1= Ma,, it is therefore natural
to look for solutions of the form a,, = cr™ (where ¢ = [ g; }) Note that a,, 1= crtl=ra,,.

Plugging into a,, 1 = Ma,, we find cr" 1 = Mcr™.

Cancelling ™ (just a nonzero number!), this simplifies to rc = Mec.

In other words, a,, = cr™ is a solution if and only if ¢ is an r-eigenvector of M.

Not enough eigenvectors? In that case, we know what to do as well (at least in principle): instead of looking
only for solutions of the type a,, =v\", we also need to look for solutions of the type a,, = (vn + w)\™. Note
that this can only happen if an eigenvalue is a repeated root of the characteristic polynomial.

Matrix solutions. A matrix ®,, is a matrix solution to a,, +1 = Ma,, if ®,,4.1 =M P,,. ,, being a matrix solution
is equivalent to each column of ®,, being a normal (vector) solution. If the general solution of a, 1 = Ma,
can be obtained as the linear combination of the columns of ®,,, then ®,, is a fundamental matrix solution.

Why can we compute matrix powers this way? Recall that, given a first-order system a,,+1 = Ma,, it is
clear that the solution satisfies a,, = M "a. Likewise, a fundamental matrix solution ®,, to the same recurrence
satisfies ®,, = M "®q. Multiplying both sides by <I>0_1 (on the right!) we conclude that Canbo_l =M.

Already know how to compute matrix powers? If you have taken linear algebra classes, you may have learned
that matrix powers M™ can be computed by diagonalizing the matrix M. The latter hinges on computing
eigenvalues and eigenvectors of M as well. Compare the two approaches!

Example 58. Let M = [ i :170 }

(a) Determine the general solution to a,,+1= Ma,,.
(b) Determine a fundamental matrix solution to a,, ;= Ma,,.
(c) Compute M™.

(d) Solve a,,+1=Ma,, aoz{ ; ]
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Solution.

(a) Recall that each A-eigenvector v of M provides us with a solution: a,, = vA™

We computed in Example 52 that [ f } is an eigenvector for A =3, and [ 1 } is an eigenvector for A\ = —2.
Hence, the general solution is Cl{ f }3” + Cg{ i }(—2)”.

(b) Note that we can write the general solution as

an=Ci[2 oo Hean=[%0 () S ]

We call <I>n:{ 2;" E:;g: } the corresponding fundamental matrix (solution).
Note that our general solution is precisely ®,,c with c:[ gl }

2
Observations.

(a) The columns of ®,, are (independent) solutions of the system.

(b) @, solves the RE itself: ®,, 41 =MP,.

[Spell this out in this example! That ®,, solves the RE follows from the definition of matrix
multiplication.]

(c) It follows that ®,, = M"™®q. Equivalently, cI)ncpo_l = M". (See next part!)

(c) Note that CIJO:{ f 1 }, so that <I>0_1 :{ fl ;1 } It follows that

M":@nq>01:[2‘3n (—2)"“ 1 —1}:[2-3”—(_2)71 —2.3n 4 2(—2)n

3 (=2)n || -1 2 3n—(=2)"  —3n42(=2)"

Check. Let us verify the formula for M™ in the cases n =0 and n = 1:

0_[2-1 —242]_[10
M _{1—1 —1+2}_[0 1}

=[G = ]

(@) an=Mrao=[ 22 GR 2RO |4 =[2G

Sage. Once we are comfortable with these computations, we can let Sage do them for us.

>>> M = matrix([[8,-10],[5,-7]1]1)

>>> M~2

14 —10
5 -1

Verify that this matrix matches what our formula for M™ produces for n =2. In order to reproduce the general
formula for M™, we need to first define n as a symbolic variable:

>>> n = var(’n?)
>>> M~°n
23" —(=2)" —2.3"+2 (=2)"
3 —(=2)" =342 (=2)"

Note that this indeed matches our earlier formula. Can you see how we can read off the eigenvalues and
eigenvectors of M from this formula for M™? Of course, Sage can readily compute these for us directly using,
for instance, M.eigenvectors_right (). Try it! Can you interpret the output?
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Notes for Lecture 9 Mon, 2/2/2026

Example 59. (review) Write the (second-order) RE a,,+2=ap 41+ 2a,, with ag=0, a1 =1, as
a system of (first-order) recurrences.

an [ ants ] Qi1 _[o1 . _Jo
- ,thenan+1—{ }—{ =5 a, with ag= e

Solution. If a, =
n Ant2 Any1+ 2an,

Example 60. Let M = [ g i }

(a) Determine the general solution to a,, 1= Ma,,.
(b) Determine a fundamental matrix solution to a,,+1 = Ma,,.
(c) Compute M™.

(d) Solve a,,+1=Ma,, aoz[ (1) ]

Solution.

(a) Recall that each A-eigenvector v of M provides us with a solution: namely, a,, = vA™.
The characteristic polynomial is: det(A — \I) = det([ ;A L * N D =X -A-2=(A—=2)(A+1).
Hence, the eigenvalues are A=2 and A = —1.
e A\ =2: Solving [ -2 1 }v:O, we find that 'v:[ ;

5 1 } is an eigenvector for \ = 2.

e )= —1: Solving [ ; ; }v:O, we find that v:{ 711 } is an eigenvector for A = —1.

Hence, the general solution is Cl{ ; }2” + CQ|: _11 }(71)".

(b) Note that Caf ) |27 +Co 1 |- =] % S0 ],

2n —(=1)" }
2.2" (=1)™ |

Comment. Other choices are possible and natural. For instance, the order of the two columns is based
on our choice of starting with A =2. Also, the columns can be scaled by any constant (for instance, using
—uv instead of v for A= —1 above, we end up with the same ®,, but with the second column scaled by —1).

Hence, a fundamental matrix solution is ®,, :{

In general, if ®,, is a fundamental matrix solution, then so is ®,,C where C' is an invertible 2 X 2 matrix.

n n —1
(c) We compute M™=®,,d; " using @n:{ 2?2n _((—_1:51 } Since @51:[ ; _11 } :%{ _12 1 }, we have

e =[ % O =l e )

(@ an=bmao =3 22000 2 [ =3 ]

Alternative solution of the first part. We saw in Example 59 that this system can be obtained from a,, 42 =

an+1+ 2ay, if we set a:{ a“" } In Example 44, we found that this RE has solutions a,, =2™ and a,, = (—1)".
n+1
01

Correspondingly, a, 1 :{ 9 1

}an has solutions an:{ 2311 } and an:{ ((__1)1211 ]

These combine to the general solution Cl{ 2311 } + C’g{ ((__1)1,)111 } (equivalent to our solution above).

Alternative for last part. Solve the RE from Example 59 to find a,, :%(2” —(=1)"). The above is an:[ an }

An 41
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We have learned how to compute M™ for a matrix M using its eigenvalues and eigenvectors, as
well as solve the system a,, 1 = Ma,,. For diagonal matrices, all this is much simpler:

3
Example 61. If M{ —2 5

J, what is M"™?
1

Also: what is the solution to a, 41 = Ma,?

Comment. Entries that are not printed are meant to be zero (to make the structure of the 4 X 4 matrix more
visibly transparent).

3n
Solution. M”:{ =2)" 5n }
1

If this isn’t clear to you, multiply out M2. What happens?

a, ban+ 1= 3511? |' a, '| |' 3naq '|
Also: ay, 1= Ma,, with a, :{ i: J decouples into Z:_:l_: 5Cn" which is solved by a,, :{ i: J:{ (;%,)cébo J
dn dnr = dn dn do

Example 62. (extra practice)

(a) Write the recurrence a3 —4ay 2+ an4+1+ 6a, =0 as a system a,, 1 = Ma,, of (first-
order) recurrences.

(b) Determine a fundamental matrix solution to a,,+1 = Ma,,.

(c) Compute M™.

Solution.
an 0 1 0
(a) If ap=| an41 |, then the RE becomes a,,+1=Ma, with M=| 0 0 1
an 2 6 —1 4

(b) Because we started with a single (third-order) equation, we can avoid computing eigenvectors and eigen-
values (indeed, we will find these as a byproduct).
By factoring the characteristic equation N3 —4N?2 + N +6= (N — 3)(N —2)(N + 1), we find that the
characteristic roots are 3,2, —1 (these are also precisely the eigenvalues of M).
Hence, an, =C1-3" 4+ Cq-2" + C5- (—1)" is the general solution to the initial RE.
3m 2" (=)™
Correspondingly, a fundamental matrix solution of the system is ®,, =| 3-3" 2.2" —(—-1)"
9.3" 4.2™ (=1)"

1 1 1
Note. This tells us that [ 3 ] is a 3-eigenvector, { 2 ] a 2-eigenvector, and [ -1 ] a —1l-eigenvector of M.
9 4 1

(c) Since @41 =M®,, we have &,, = M"P( so that M" = @néal. This allows us to compute that:
1 —6-3"+12-2"4+6(—1)" —-3-3"+4+8.2"—5(—=1)" 3-3"—4-2" 4+ (—1)"
M”:E —18-3"+24-2" —6(—1)"
—54-3"4+48-2"4+6(—1)"
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Systems of differential equations

Review. Check out Examples 59 and 60 again. Below we will repeat the same steps, replacing
recurrences with differential equations as well as \"* with e**

Example 63. Write the (second-order) initial value problem vy =y’ + 2y, y(0)=0, y’(0)=1 as
a first-order system.

Solution. If y—[;/,},then y’:[g///}:[y/i/Qy]:[g 1}[;}:[2 }]ywith 9(0):{?}-

This is exactly how we proceeded in Example 59.

Homework. Solve this IVP to find y(z) = %(eh — e~ %), Then compare with the next example.

Example 64. (preview) Let M = [ g 1 }

(a) Determine the general solution to y’' = My.
(b) Determine a fundamental matrix solution to y' = My.

(c) Solve y'= My, y(0)= [ (1) }

Solution. In Example 60, we only need to replace 2" by ¢2* (root 2) and (—1)" by e~ % (root —1)!
(a) The general solution is Cl{ ; }62””—1—02[ 711 }e_z.

(b) A fundamental matrix solution is ®(z) :{ e e }

20 —x
2-e e

2x

_ l et —e™ 7"
© ) =3 s |
Preview. The special fundamental matrix M ™ will be replaced by e, the matrix exponential.

Example 65. Write the (third-order) differential equation 3" = 3y” — 2y’ 4+ y as a system of
(first-order) differential equations.

y y' y'
H /
Solution. y , then y :[ y" }:{ y
y y/// 3y/1_2y/+y
0
0
1

1 0
0 1
-2 3

For short, y' = Yy

Comment. This is one reason why we care about systems of DEs, even if we work with just one function.

Example 66. Consider the following system of (second-order) initial value problems:

12 / /
Y1 =2y1 —3y2+ Ty / /
0)=2, 0)=23, 0)=-1, 0)=1

Write it as a first-order initial value problem in the form y’= My, y(0) = yj.

{ u1 -I yi yi

y 0 01 0 y1 0 01 0
; _| Y2 N IRV v4 _1 0 00 1 ya || 0 00 1
Solution. If y= 7 |, then y' = i 1= 2wt —smtrrm [Tl 0 72 3| i [T 0 72 23 |¥
v ys' 4yl + y2 — 5y, -5 04 1 Y2 -5 04 1
0 01 0 [ 2 ]
For short, the system translates into y’ = 8 2 g 13 y with y(0) = _3 .
-5 04 1 1
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Notes for Lecture 10 Wed, 2/4/2026

\ Solving systems of differential equations

We can solve the system y’ = My exactly as we solved a,, 11 = Ma,,.

The only difference is that we replace each A™ (for characteristic root / eigenvalue \) with e*. In fact, as shown
in the examples below, we can translate back and forth at any stage.

solving systems of DEs) To solve vy’ = Muv, determine the eigenvectors of M.
g sy Yy Y g

e Each \-eigenvector v provides a solution: y(x) = ve’®

e If there are enough eigenvectors, these combine to the general solution.

In that case, we get a fundamental matrix (solution) ®(z) by placing each solution
vector into one column of ®(z).

Mz ysing any fundamental matrix ®(z):

e If desired, we can find the matrix exponential ¢
eMz=@(2)®(0)~L.

Note that e is the unique matrix solution to y’ = My, y(0) = I (the identity matrix).

Application: the unique solution to y’= My, y(0) = c is given by y(z) =eM7c.

Note. Unlike with M ™, it might not be clear what the matrix exponential e really is. One way to think

about it is that we are defining e as the solution to the IVP y’ = My, y(0) = I. This is equivalent to how

one can define the ordinary exponential e® as the solution to ¥/ =y, y(0) =1.

Mx

[In a little bit, we will also discuss how to think about the matrix exponential e using power series.]

Comment. If there are not enough eigenvectors, then we know what to do (at least in principle): instead of looking
only for solutions of the type y(z) =ve’®, we also need to look for solutions of the type y(z) = (vz + w)e ™.
Note that this can only happen if an eigenvalue is a repeated root of the characteristic polynomial.

Why does this work? Compare this to our method of solving systems of REs and for computing matrix powers
M™. The above conclusion about systems of DEs can be deduced along the same lines as what we did for REs:

e For instance, for the first part, let us look for solutions of y’ = My of the form y(z) = ver?.

Note that y’ = Ave*® = \y. Plugging into y’ = My, we find Ay = My.

Ax

In other words, y(z) =wve"? is a solution if and only if v is a A-eigenvector of M.

e If &(x) is a fundamental matrix solution, then so is ¥(z) = ®(z)C for every constant matrix C. (Why?!)
Therefore, ¥(x) = ®(x)®(0) ! is a fundamental matrix solution with W (0) = ®(0)®(0) ! =1.

But eM? is defined to be the unique such solution, so that W(z) = eM®.
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Example 67. Let M:{ L6 }

(a)
(b)
()
(d)
()
(f)

-1 4

Determine the general solution to y' = My.

Determine a fundamental matrix solution to y’ = My.
Compute eM?,

Solve the initial value problem y’= My with y(0) :{ } }
Compute M™.

Solve a,,+1= Ma,, with aoz[ } }

Solution.

(a)

(b)

(c)

(d)

(e)

(f)

We determine the eigenvectors of M. The characteristic polynomial is:

det(M—AI):det([ RN D:(71f/\)(4f>\)+6:>\273>\+2:(>\71)()\72)

Hence, the eigenvalues are A=1 and A\ = 2.

e A\=1: Solving [ 2

w o

}v =0, we find that v = [ 51)’ } is an eigenvector for A = 1.

e A\ =2: Solving [ :“;’ g }v =0, we find that v :[ f } is an eigenvector for A =2.

Hence, the general solution is Cl{ z; ]em + CQ|: f }GQI.

. 0 . 0 T 2w
The corresponding fundamental matrix solution is ® :{ 3; 2@‘; ]

Note that ®(0) :{ ? } so that @(0)*1:[ _11 2 } It follows that

1 3

3e” 2e2¢ [ 1 —2 3e” —2¢°* —6e” + 6e>”
Mz _ -1_ =
€ z_@(w)@(O) _l eT 2% :||: -1 3 :| _l eT — 2w —2€I+3€2I ’

. . _ Maz[ 17| 3e*—2e2* —6e® + 6e2” 1] | —3e® + 4e2®
The solution to the IVP is y(z) =€ [ N } —{ ot _guegee M 1 }—{ ey oo ]
Note. If we hadn'’t already computed e?#, we would use the general solution and solve for the appropriate
values of C'1 and C5. Do it that way as well!
From the first part, it follows that a,,+1 = Ma,, has general solution 01{ ‘;’ } + CQ|: ? }2".
(Note that 1" =1.)

The corresponding fundamental matrix solution is ®,, = [

As above, @0:{ 32 }, so that @(0)_1:{ 711 ;2 } and

3 2.2"
1 2on

11

n_ -1 |3 22" 1 -2 | 3-2-2" —6+4+6-27
M= ®n®o _[1 2" -1 3 | | 1-2" —243.2"
Important. Compare with our computation for ¢%

computation? Write down M " directly from eM<,

The (unique) solution is an:M"{ 1 }:[ 3-2-2" —646-2" }[ } }:[ —3+4.27 }

. Can you see how this was basically the same

1—2" —243.27 —142.27
Important. Again, compare with the earlier IVP! Without work, we can write down one from the other.
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We purposefully omit details of some computations in the next example to highlight how it
proceeds along the same lines as Example 58.

Important. In fact, we can translate back and forth (without additional computations) by simply replacing 3™
and (—2)™ by €3 and e 27,

Example 68. (extra practice) Let M = [ g :170 }

(a) Determine the general solution to ¥y’ = My.
(b) Determine a fundamental matrix solution to y' = Muy.
(c) Compute M.

(d) Solve the initial value problem y’= My with y(0) = [ (1) }
Solution. (See Example 58 for more details on the analogous computations.)

(a) Recall that each \-eigenvector v of M provides us with a solution: namely, y(z) = ve ?.

We computed earlier that [ f } is an eigenvector for A =3, and [ } } is an eigenvector for A = —2.

Hence, the general solution is Cl[ f }639” + Cg{ 1 }6_296.

9. eBm 672$
(b) The corresponding fundamental matrix solution is ®(x) = 3 9w |-
e e

[Note that our general solution is precisely @(m)[ g1 }]
2

(c) Since ®(0) :{ f } ] we have ®(0) ! :{ 711 ;1 } It follows that

Mz _ $(2)P(0)~ 1 = 2.3% g2 1 —1] | 2-e3®—e 28 _2.37 4 22
€ - (.Z‘) ( ) - 6333 672$ -1 2 o €3m_€72m —63z+2€72m .

Max

in the simple case x =0: e

Check. Let us verify the formula for e MO:{ 2-1 —2+2 ] :{ (1) (1) ]

1—-1 —1+2

_92.e3% 4 2¢—2

— €37 4 22 .

(d) The solution to the IVP is y(z) :eM“’{ (1] } :{ ] (the second column of e

Sage. We can compute the matrix exponential in Sage as follows:

>>> M = matrix([[8,-10],[5,-7]1]1)

>>> exp(M#*x)

(22 —1)e(=22) _2 (62 _1)e(=22)
() _1)e(=22)  _(e(52) _9)e(-22)

Note that this indeed matches the result of our computation.

[By the way, the variable = is pre-defined as a symbolic variable in Sage. That's why, unlike for n in the
computation of M™, we did not need to use x = var(’x?’) first.]
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1 x 962z 3e® _3621
Example 69. Suppose that M7 =_—| ¢+
p S pp 10 3eT — 362w 9e® + 82w

(a) Without doing any computations, determine M ™.

(b) What is M?

(c) Without doing any computations, determine the eigenvalues and eigenvectors of M.

(d) From those, write down a simple fundamental matrix solution to y'= My.

(e) From that fundamental matrix solution, how can we compute eMT? (1f we didn't know it already...)
(f) Having computed e**, what is a simple check that we can (should!) make?

Solution.

(a) Since e® and €2 correspond to eigenvalues 1 and 2, we just need to replace these by 1" =1 and 2":

n_ 1[14+9.27 3-3.27
M™=16] 3-3.27 942n }

(b) We can simply set n =1 in our formula for M", to get M:i[

10

19 -3
-3 11 |

Max Qm)-

(c) The eigenvalues are 1 and 2 (because e'* contains the exponentials e® and e

Looking at the coefficients of e® in the first column of e, we see that [ ;) } is a l-eigenvector.

[We can also look the second column of ¢, to obtain [ 3 } which is a multiple and thus equivalent.]

Likewise, by looking at the coefficients of €2 we see that [ 33 } or, equivalently, [ A

} is a 2-eigenvector.

Comment. To see where this is coming from, keep in mind that, associated to a \-eigenvector v, we
have the corresponding solution y(z) = ve*?® of the DE y’ = My. On the other hand, the columns of
eM? are solutions to that DE and, therefore, must be linear combinations of these ve*”.

1
3
general solutions consists of the linear combinations of these two).

(d) From the eigenvalues and eigenvectors, we know that [ }e‘r and [ 713 }62”" are solutions (and that the

. . . . z 9.2z
Selecting these as the columns, we obtain the fundamental matrix solution ®(z) :{ 3651 63261 ]
Comment. The fundamental refers to the fact that the columns combine to the general solution.

The matrix solution means that ®(x) itself satisfies the DE: namely, we have ®' = M ®. That this is the
case is a consequence of matrix multiplication (namely, say, the second column of M ® is defined to be
M times the second column of ®; but that column is a vector solution and therefore solves the DE).

(e) We can compute eM® as eM* = & (2)P(0) 1.

If &(x) :{ 366‘1 76326121 ], then ®(0) :{ :13 713 } and, hence, ®(0)~! :%[ 53 :13 } It follows that

3¢ 22 10| —3 1| 10

T 3% |1[ 1 3 1
Mx:q> d(0 —1_ € 3e —
€ (.CB) () |: 36.7:_3623: 96'7:4—62'7:

eT 4+ 9e2%  3eT _ 327 }

(f) We can check that eM® equals the identity matrix if we set = = 0:

1
10

e? 4+ 9e2%  3eT _ 327

z=0 1| 149 3—-3 | |10
3eT — 3e2%  QeT 4 27 o

> —
100 3—3 9+1 01

This check does not require much effort and can even be done in our head while writing down e%_ There
is really no excuse for not doing it!
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Notes for Lecture 11 Fri, 2/6/2026

' Another perspective on the matrix exponential |

Review. We achieved the milestone to introduce a matrix exponential in such a way that we

can treat a system of DEs, say y' = My with y(0) = ¢, just as if the matrix M was a number:

namely, the unique solution is simply y =e*c.

The price to pay is that the matrix e? requires some work to actually compute (and proceeds by first determining

a different matrix solution ®(x) using eigenvectors and eigenvalues). We offer below another way to think about
eM® (using Taylor series).

(exponential function) e” is the unique solution to ' =1y, y(0)=1.

From here, it follows that e* =1 +x+2—!2+§—?+

The latter is the Taylor series for e” at x =0 that we have seen in Calculus II.

Important note. We can actually construct this infinite sum directly from y’ =1y and y(0) = 1.

3 2
Indeed, observe how each term, when differentiated, produces the term before it. For instance, %% = %

Review. We defined the matrix exponential ¢"'* as the unique matrix solution to the IVP
y'=My, y(0)=1I.

We next observe that we can also make sense of the matrix exponential ¢ as a power series.

Theorem 70. Let M be n x n. Then the matrix exponential satisfies

eM:I+M+%M2+%M3+...

Proof. Define ®(z) :I—i—Mx—i—%MQ:cQ—i—%M%cg—i—

/ _d 1,m2 2, 1,33
D'(x) =4 I—i—Mm—&—aMx +3!Ma: +...
2 1,3 2
=0+M+M x+2lM ¥+ ... =MP(x).

Clearly, ®(0) = I. Therefore, ®(x) is the fundamental matrix solution to y’ = My, y(0) =1.

But that’s precisely how we defined eM* earlier. It follows that ®(x) =e®. Now set z=1. O

Example 71. If A=[2 0], then Alooz{ 2y st ]

Example 72. IfA:[g g] then eA:[(l) (1)}4—{(2) 2}4-%[ 202 502}4_-..:
Clearly, this works to obtain e for every diagonal matrix D.

: _[2z 0 Az _[ 10 2z 0 1l (@222 o ._|ex® o
In particular, for A:c—[ o 5;;;]’6 —[0 1]—1—[ o 5x]+21[ 0 (595)2}4_ —[ 0 o5e }
The following is a preview of how the matrix exponential deals with repeated characteristic roots.

Example 73. Determine e* for A = [ 8 (1) }

Solution. If we compute eigenvalues, we find that we get A\ = 0, 0 (multiplicity 2) but there is only one 0-
eigenvector (up to multiples). This means we are stuck with this approach—however, see next extra section.

: 2_[oo0 Az _ _[10 0z]_[1 =z
The key here is to observe that A _[0 0}. It follows that e x—I—l—Aa:—[O 1}—1—[0 0}_{0 1}.
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\ Extra: The case of repeated eigenvalues with too few eigenvectors

Review. To construct a fundamental matrix solution ®(x) to y’= My, we compute eigenvectors:
Given a \-eigenvector v, we have the corresponding solution y(z) = ve’”.

If there are enough eigenvectors, we can collect these as columns to obtain ®(z).
The next example illustrates how to proceed if there are not enough eigenvectors.

In that case, instead of looking only for solutions of the type y(z) = ve*”, we also need to look for solutions

of the type y(x) = (vx + w)eA‘T. This can only happen if an eigenvalue is a repeated root of the characteristic
polynomial.

Example 74. Let M:{ fl i }

(a) Determine the general solution to y' = My.
(b) Determine a fundamental matrix solution to y’ = My.
(c) Compute eM*

(d) Solve the initial value problem y’= My with y(0) = [ (1) }

Solution.

(a) We determine the eigenvectors of M. The characteristic polynomial is:
det(M — ) :det([ SoA D =(8—A)(A—A) +4=X2—12\+36= (A —6)(\ —6)

Hence, the eigenvalues are A =6,6 (meaning that 6 has multiplicity 2).

e To find eigenvectors v for A = 6, we need to solve [ _21 _42 }'v =0.

Hence, v :{ 712 } is an eigenvector for A =6. There is no independent second eigenvector.

e We therefore search for a solution of the form y(z) = (v 4 w)e” with A= 6.
!
y'(z) = Oz + Aw + v)er® = My = (Mvzx + Mw)e ®
Equating coefficients of x, we need \v = Mv and \w + v = Mw.

Hence, v must be an eigenvector (which we already computed); we choose v :{ 712 }

[Note that any multiple of y(x) will be another solution, so it doesn’t matter which multiple of { *12 } we choose.]

Aw +v=Mw or (M — A\)w =wv then becomes [ 31 f2 }w:{ 712 }

One solution is w :[ :)1 } [We only need one.]

Hence, the general solution is Cl{ 712 ]GGI + Cg([ 12 }:r—i—[ D ebz.

b):

(b) The corresponding fundamental matrix solution is ® = { _2661 _(2’” + 1)et }

(c) Note that ®(0) :{ _12 _01 } so that ®(0) ! :{ _01 _12 } It follows that

€Mm:<1>(x)<l>(0)1:[ —2e0 (2:c+1)66”f“ 0 1 ]:[ 2z 41)eb  4zebT }

b7 xeb® -1 -2 —zef 2z —1)eb
b —(2¢ — 1) %" g ebt

(d) The solution to the IVP is y(z) :eM’”{ (1] } { (22 + 1)et dz el M (1) } { (22 + 1)eb” ]
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Phase portraits and phase plane analysis

Our goal is to visualize the solutions to systems of equations. This works particularly well in the
case of systems of two differential equations. A system that can be written as

dx
dy
G = g(z,y)

is called autonomous because it doesn’'t depend on the independent variable .
Comment. Can you show that if z(¢) and y(t) are a pair of solutions, then so is the pair z(t 4 ¢o) and y(t +to)?

We can visualize solutions to such a system by plotting the points (z(t), y(t)) for increasing values
of t so that we get a curve (and we can attach an arrow to indicate the direction we're flowing
along that curve). Each such curve is called the trajectory of a solution.

Even better, we can do such a phase portrait without solving to get a formula for (z(t), y(¢))!

That's because we can combine the two equations to get %: %, which allows us to make
a slope field! If a trajectory passes through a point (z, y), then we know that the slope at that
point must be %:%.

This allows us to sketch trajectories. However, it does not tell us everything about the corresponding solution
(z(t), y(t)) because we don't know at which times ¢ the solution passes through the points on the curve.

However, we can visualize the speed with which a solution passes through the trajectory by attaching to a point

(z,y) not only the slope fgm y% but the vector [ gg; z; } That vector has the same direction as the slope but

it also tells us in which direction we are moving and how fast (by its magnitude).

Example 75. Sketch some trajectories for the system <% =g - (y—1), 3 % =y-(z—1).

dt
Solutlon Let's look at the point (x,y) = (2, —1), for instance. Then the DEs tell us that ——:r (y—1)=—4
_ _ _ dr dy\ _ _ o
and ¥ dt =y-(z—1) 1. We therefore attach the vector (dt’ dt) (—4,-1) to (z, y) =(2,-1).
Note that if we use % = % directly, we find the slope —y :—i = %. This is slightly less information

because it doesn't tell us that we are moving “left and down" as the arrows in the following plot indicate:
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. . . od —1 . . .
Comment. In this example, we can solve the slope-field equation d—g = % using separation of variables.

Do it! We end up with the implicit solutions y — In|y| =2 — In|z| + C.
If we plot these curves for various values of C, we get trajectories in the plot above. However, note that none
of this solving is needed for plotting by itself.

Sage. We can make Sage create such phase portraits for us!

>>> x,y = var(’x y?)

>>> streamline_plot ((x*(y-1),y*(x-1)), (x,-3,3), (y,-3,3))
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Notes for Lecture 12 Mon, 2/9/2026

‘ Equilibrium solutions

dx

(20, Yo) is an equilibrium point of the system — = f(z,y), %: g(z,y) if

f(z0,90)=0 and g(zo, yo) =0.

In that case, we have the constant (equilibrium) solution z(t) =z, y(t) = yo.

Comment. Equilibrium points are also called critical points (or stationary points or rest points).

In a phase portrait, the equilibrium solutions are just a single point.

Recall that every other solution (z(t), y(t)) corresponds to a curve (parametrized by t), called the trajectory of
the solution (and we can adorn it with an arrow that indicates the direction of the “flow" of the solution).

We can learn a lot from how solutions behave near equilibrium points.

An equilibrium point is called:
e stable if all nearby solutions remain close to the equilibrium point;
e asymptotically stable if all nearby solutions remain close and “flow into” the equilibrium;

e unstable if it is not stable (some nearby solutions “flow away” from the equilibrium).

Comment. Note that asymptotically stable is a stronger condition than stable. A typical example of a stable,
but not asymptotically stable, equilibrium point is one where nearby solutions loop around the equilibrium point
without coming closer to it.

Advanced comment. For asymptotically stable, we kept the condition that nearby solutions remain close because
there are “weird" instances where trajectories come arbitrarily close to the equilibrium, then “flow away” but
eventually “flow into” (this would constitute an unstable equilibrium point).

Example 76. (cont’d) Consider again the system %: z-(y—1), %: y-(x—1).
(a) Determine the equilibrium points.
(b) Using the phase portrait from Example 75, classify the stability of each equilibrium point.

Solution.

(a) We solve z(y —1) =0 (thatis, z=0 or y=1) and y(x — 1) =0 (that is, =1 or y =0).
We conclude that the equilibrium points are (0,0) and (1, 1).

(b) (0,0) is asymptotically stable (because all nearby solutions “flow into” (0, 0)).
(1,1) is unstable (because some nearby solutions “flow away” from (1,1)).
Comment. We will soon learn how to determine stability without the need for a plot.

Comment. If you look carefully at the phase portrait near (1, 1), you can see that certain solutions get
attracted at first to (1, 1) and then “flow away” at the last moment. This suggests that there is a single
trajectory which actually “flows into” (1,1). This constellation is typical and is called a saddle point.
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\ Phase portraits of autonomous linear differential equations

Example 77. Consider the system

()
(b)
(c)

de
dt

dy

T =4x —2y.

Y —oT
Determine the general solution.
Make a phase portrait. Can you connect it with the general solution?

Determine all equilibrium points and their stability.

Solution.

(a)

(b)

/
Note that we can write this is in matrix form as [ z } = M{ Z } with M :{ _45 _12 }

M has —1-eigenvector [ }1 } as well as —6-eigenvector [ _11 }

Hence, the general solution is [ ggg }:Cl{ i }e_t—}—Cz[ _11 }6_6’5.

We can have Sage make such a plot for us:

>>> x,y = var(’x y?)
streamline_plot ((-5%x+y,4*x-2%y), (x,-4,4), (y,-4,4))

(<)

Question. In our plot, we also highlighted two lines
through the origin. Can you explain their signifi-

cance?

Explanation. The lines correspond to the special
solutions Cl[ 411 }e‘t (green) and C’Q[ _11 }e_ﬁt
(orange). For each, the trajectories consist of points
that are multiples of the vectors [ i } and [ _11 },
respectively.

Note that each such solution starts at a point on

)

.

one of the lines and then “flows” into the origin.
(Because e~ and e~ %" approach zero for large t.)

Question. Consider a point like (4,4). Can you explain why the trajectory through that point doesn’t go
somewhat straight to (0,0) but rather flows nearly parallel the orange line towards the green line?

Explanation. A solution through (4, 4) is of the form [ Zgg } = Cl{ i }e*t + CQ|: _11 }6767& (like any
other solution). Note that, if we increase ¢, then e~ 6% becomes small much faster than e .

As a consequence, we quickly get [ 58 } =~ Cl[ i }e—t, where the right-hand side is on the green line.
The only equilibrium point is (0,0) and it is asymptotically stable.

We can see this from the phase portrait but we can also determine it from the DE and our solution: first,
solving y — 5z =0 and 4z — 2y = 0 we only get the unique solution z =0, y =0, which means that only
(0,0) is an equilibrium point. On the other hand, the general solution shows that every solution approaches
(0,0) as t— 0o because both et and e~ approach 0.

In general. This is typical: if both eigenvalues are negative, then the equilibrium is asymptotically stable.
If at least one eigenvalue is positive, then the equilibrium is unstable.
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Notes for Lecture 13 Wed, 2/11/2026

Example 78. Consider the system i—f =5z — v, % =2y —4x.
(a) Determine the general solution.

(b) Make a phase portrait.

(c) Determine all equilibrium points and their stability.

Solution.

/
(a) Note that we can write this is in matrix form as [ f/ } = M{ i } with M = —[ _45 _12 }, where the matrix

is exactly —1 times what it was in Example 77.
Consequently, M has 1-eigenvector {i} as well as 6-eigenvector [ _11 } (Can you explain why the

eigenvectors are the same and the eigenvalues changed sign?)

Thus, the general solution is [ zég }: Cl{ le }et—l— Cz{ 711 }eﬁt.

(b) We again have Sage make the plot for us:

>>> x,y = var(’x y?)
streamline_plot ((5*x-y,-4*x+2xy), (x,-4,4), (y,-4,4))

Note that the phase portrait is identical to the one in Example 77, except that the arrows are reversed.

(c) The only equilibrium point is (0,0) and it is unstable.
We can see this from the phase portrait but we can also see it readily from our general solution [ ié:g } =
Cl{ i }et—l—Cg{ 711 }eﬁt because e? and 5% go to oo as t — co. )

In general. If at least one eigenvalue is positive, then the equilibrium is unstable.

Example 79. Suppose the system i—f = f(z, y), % = g(z, y) has general solution [Zgg } =

Cl[ 31 }e‘t—i—Cg[ _11 }th. Determine all equilibrium points and their stability.
Solution. Recall that equilibrium points correspond to constant solutions. Clearly, the only constant solution is
the zero solution [ ;gg } :{ 8 ] Equivalently, the only equilibrium point is (0, 0).
Since e8! — 0o as t — oo, we conclude that the equilibrium is unstable. (Note that the solution C’g[ _11 ]66t

starts arbitrarily near to (0,0) but always “flows away”).
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\ Stability of autonomous linear differential equations

Example 80. (spiral source, spiral sink, center point)

|

(a) Analyze the system Al a ] :[ 1

dt| vy |
(b) Analyze the system %: Z = _[

S

1 1
—4 1

x
Yy

I

T
Yy

|

(c) Analyze the system Al :[ _04 (1) ][ z }

Solution.

(a)

The eigenvalues are A = 1 & 27 and the general solution, in real

form, is:
[0 =01 5558 Jer+ ol sl Jef

In this case, the origin is a spiral source which is an unstable
equilibrium (note that it follows from e! — oo as t — oo that all
solutions “flow away"” from the origin because they have increasing

amplitude).
Review. [ cos(t) } parametrizes the unit circle.
sin(t)

P cos(t) . .

Similarly, [ 2sin(1) ] parametrizes an ellipse.
(b) : : o
The eigenvalues are A = —1 + 2¢ and the general solution, in real
form, is:
z(t) | _ cos(2t) —t sin(2t) —t
{ y(t) } - Cl{ —2sin(2t) ]e + CQ[ 2cos(2t) }e

In this case, the origin is a spiral sink which is an asymptotically
stable equilibrium (note that it follows from e™t — 0 as t — oo
that all solutions “flow into” the origin because their amplitude
goes to zero).

Comment. Note that [ zgg } solves the first system if and only

if [ ;E:g ] is a solution to the second. Consequently, the phase

portraits look alike but all arrows are reversed.

(c)

The eigenvalues are A = +-2i and the general solution, in real form,
is:

[38 | =0 Saiey [+ 2k |

In this case, the origin is a center point which is a stable equi-
librium (note that the solutions are periodic with period 7 and
therefore loop around the origin; with each trajectory a perfect
ellipse).
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Review. In Example 77, we considered the system =y — 5:1:, dt =4z —2y.

We found that it has general solution [ ggg } = C’l[ i }e_t + CQ|: 711 }e‘ﬁt.
In particular, the only equilibrium point is (0,0) and it is asymptotically stable.

The following example is an inhomogeneous version of Example 77:

Example 81. Analyze the system — o _ Yy —or + 3, dt =4x —2y.

In particular, determine the general solution as well as all equilibrium points and their stability.

Solution. As reviewed above, we looked at the corresponding homogeneous system in Example 77 and found

that its general solution is [ iég }:Cl[ i }e*t—}-C’g[ _11 }6*61".

Note that we can write the present system in matrix form as [ } [ } [ g ] with M = [ _45 ! }
. I . z _ 1 _ [ —2 —17[ 3 1
To find the equilibrium pomt,wesolveM[y}—}-{O} Otoflnd{ } —M~ {0}* 6[—4 _5”0} {2}

The fact that [ ; } is an equilibrium point means that [ ”yc }:{ ; } is a particular solution!

(Make sure that you see that it has exactly the form we expect from the method of undetermined coefficients!)
Thus, the general solution must be [ zgg }:{ ; }Jrcl{ i }e_tJrCz{ _11 }6_& (that is, the particular solution
plus the general solution of the homogeneous system that we solved in Example 77).

As a result, the phase portrait is going to look just as in Example 77 but shifted by [ ; }

Because both eigenvalues (—1 and —6) are negative, [ ; } is an asymptotically stable equilibrium point. More

precisely, it is what is called a nodal source.
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As we have started to observe, the eigenvalues determine the stability of the equilibrium point in
the case of an autonomous linear 2-dimensional systems. The following table gives an overview.

Important. Note that such a system must be of the form %[ z } = M{ z } + ¢, where c:[ Zl } is a constant
2

vector. Because the system is autonomous, the matrix M and the inhomogeneous part ¢ cannot depend on t.

(stability of autonomous linear 2-dimensional systems)

eigenvalues behaviour | stability solutions have terms like
real and both positive nodal source | unstable e3t, et
real and both negative nodal sink | asymptotically stable |e=3t e~ 7t
real and opposite signs saddle unstable e 3, et
complex with positive real part |spiral source | unstable e3tcos(Tt), e3tsin(7t)
complex with negative real part | spiral sink asymptotically stable |e=3tcos(7t), e 3tsin(7t)
purely imaginary center point | stable cos(7t), sin(7t)

(not asymptotically stable)

‘ Review: Linearizations of nonlinear functions

Recall from Calculus | that a function f(x) around a point z( has the linearization

f(x)~ f(xo) + f'(wo)(x — o).

Here, the right-hand side is the linearization and we also know it as the tangent line to f(x) at zo.

Recall from Calculus Il that a function f(z,y) around a point (z¢, yo) has the linearization

[z, y)= f(xo,y0) + fe(T0, yo) (T — 20) + fy(x0, Y0)(¥ — Yo)-

Again, the right-hand side is the linearization. This time, it describes the tangent plane to f(x, y) at (xo, yo)-
Recall that f, = %f(x, y) and f, = a—if(x, y) are the partial derivatives of f.

Example 82. Determine the linearization of the function 3 + 2242 at (2,1).

Solution. If f(z,y)=3+2zy? then f, =2y and f, =4zy. In particular, f,(2,1) =2 and f,(2,1)=8.
Accordingly, the linearization is f(2,1) + f2(2,1)(z —2) + fy(2,1)(y — 1) =7+2(x —2) +8(y — 1).
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