Notes for Lecture 12 Mon, 2/9/2026

Example 57. (extra)

1 1
(a) What is the matrix P for projecting onto W = span [ 1 ],[ —1 } ?
1

2 1 1
(b) Using the projection matrix, project [ 3 ] onto W =span [ 1 ],[ —1 ]
3 1

Solution.

11 11 1
(a) Choosing A=| 1 —1 |, the projection matrix P is A(ATA)=1AT =| 1 —1 [ 31 } [ bl ]
11 11 L3

:{} _11]1[ 3 —1“1 1 1}:1{} _11]{2 4 2}:1{3 g (1)}

L1 |Bl-1 3 1 -1 1 8| 1 1 2 —4 2 2l 1 o 1

Comment. We can choose A in any way such that its columns are a basis for . The final projection
matrix will always be the same.

101 5
(b) The projection is ;[ 020 M ]:;{ 6 }
101 5

2
3
3
—1/2
= 0 is indeed orthogonal to W.

Lemma 58. If the columns of a matrix A are independent, then A”A is invertible.

Proof. Assume ATA is not invertible, so that AT Az = 0 for some = # 0. Multiply both sides with 27" to get
2TATAz = (Az)TAz = | Az ||?> =0,

which implies that Az =0. Since the columns of A are independent, this shows that & =0. A contradiction! U

Example 59. If P is a projection matrix, then what is P??

) ) , 1101 2 Jro1
For instance. For P as in Example 57, P =7/020| =35{020 =P.
101 101

Solution. Can you see why it is always true that P2 = P?
[Recall that P projects a vector onto a space W (actually, W = col(P)). Hence P? takes a vector b, projects

it onto W to get b, and then projects b onto W again. But the projection of b onto W is just b (why?!), so
that P2 always has the exact same effect as P. Therefore, PZ2= Pl

Example 60. True or false? If P is the matrix for projecting onto W, then W = col(P).

Solution. True!

Why? The columns of P are the projections of the standard basis vectors and hence in WW. On the other hand,
for any vector w in W, we have Pw = w so that w is a combination of the columns of P.

[This may take several readings to digest but do read (or ask) until it makes sense!]

In particular. rank(P)=dim W (because, for any matrix, rank(A) = dim col(A))

Armin Straub 28
straub@southalabama.edu



Review. The projection matrix for projecting onto col(A) is P = A(ATA)~tAT.

‘ Projecting onto 1-dimensional spaces

When we project onto a 1-dimensional space span{w }, we usually just say that we are projecting
onto w.

The (orthogonal) projection of v onto w is

w2

Why? Replace b with v and A with w in our general projection matrix formula to get w(w”w) ~'wTv, which

w-v
equals W'w (note that wv =w - v and w™w = ||w||? are scalars).
w
Comment. If you have taken Calculus 3, you have seen that formula before. Most likely, you were deriving it
using angles at that time. Namely, the dot product has the following connection to angles:

v-w=||v| ||w] cosh where 6 € [0, 7] is the angle between v and w

Why? You can derive this by repeating what we did, right after Definition 29 to show that v and w are orthogonal
if and only if v-w = 0. Just replace Pythagoras with the law of cosines (02 = a2+ b2 — 2ab cosh holds in any
triangle!).

Two obvious cases. Observe that the cases # =0 and 8 =90° are clearly true.

We will not discuss angles much further in this class. Just in case it is helpful, here is the typical
argument given in Calculus 3 to determine the projection proj., v of v onto w:

From the sketch, we see that “error” = v — proj, v
and that this error is orthogonal to w.

Basic trigonometry tells us that the length of proj., v “error”

is ||v|| cosf. Hence:

projw,v = ||v|| cosd W
—— ]|
length —
direction
_ lvllflw]lcost w _ (”'w>
[[w]| [[w]] [w]]?

| Orthogonal bases

Review. Vectors v, ..., v,, are a basis for V.
<= V =span{vy,...,v,} and vy, ..., v, are linearly independent.
<= Any vector w in V' can be written as w = c vy + ... + ¢, vV, in a unique way.

The latter is the practical reason why we care so much about bases!

V' could be some abstract vector space (of polynomials or Fourier series), meaning that vectors are abstract
objects and not just our usual column vectors. However, as soon as we pick a basis of V/, then we can represent
every (abstract) vector w by the (usual) column vector (c1,ca,...,cn)?.

This means all of our results can be used, too, when working with these abstract spaces!

Definition 61. A basis v, ..., v,, of a vector space V is an orthogonal basis if the vectors
are (pairwise) orthogonal. If, in addition, the basis vectors have length 1, then this is called an
orthonormal basis.
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1 0 0
Example 62. The standard basis [ 0 },[ 1 }, [ 0 } is an orthonormal basis for R?.
0 0 1
0
} { 0 }:o.
1

On the other hand, the vectors do not all have length 1, so that this basis is not orthonormal.

1
Example 63. Are the vectors [ —1 ],[
0

{2 Mg

So, this is an orthogonal basis.

1 0
1 ], 0 ] an orthogonal basis for R3? Is it orthonormal?
0 1
1
0,1 |-
0

1
Solution. { -1
0

Note. Orthogonal vectors are always linearly independent (see next class). Here, this certifies that the three
vectors are linearly independent (and hence a basis for IR3).

Normalize the vectors to produce an orthonormal basis.

Solution.

1 1 1 1
—1 | has length —1 || =1 |=+/2 = normalized: T
0 0 0 V2| o

[1 1 1 1
1 } has length [ 1 }[ 1 }:ﬁ —> normalized: 1{ 1 }
L O 0 0 V2| o
[0 0 0 0
0 | has length 0|1 0 |=1 = is already normalized: | o
L1 1 1 1

1 1 0
The resulting orthonormal basis is \;5{ :)1 }, \}5[ ! },[ (1) ]

Theorem 64. Suppose that vy, ..., v,, are nonzero and pairwise orthogonal. Then v, ..., v,, are
linearly independent.

Proof. Suppose that c;v; + ... + ¢,v,, = 0. In order to show that v, ..., v,, are independent, we need to show
that ¢y =co=...=¢, =0.
Take the dot product of v, with both sides:

0 = vy (01’01 + ... +cn'un)

C1V1 V1 + V1 V2 + ... +CpU1 - Uy,

= C1V1 V1 201||’01||2

But ||v1|| # 0 and hence ¢; =0. Likewise, we find c2=0, ..., ¢, =0. Hence, the vectors are independent. [

Comment. Note that this result is intuitively obvious: if the vectors were linearly dependent, then one of
them could be written as a linear combination of the others. However, all these other vectors (and hence any
combination of them) are orthogonal to it.
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\ Orthogonal projections if we have an orthogonal basis

Lemma 65. (orthogonal projection if we have an orthogonal basis)

If vy,...,v, are orthogonal, then the orthogonal projection of w onto span{wvy, ..., v,} is

R w - V1 w - Un
w=——v1+ ...+ —v,.
V101 Up - Up
e — e —
proj of w proj of w
onto vq onto v,

Proof. It suffices to show that the error w — w is orthogonal to each v;. Indeed:

R w - vy w - vy, w - v;
(w—w) vi=lw——vV]— .. ——— U, | V=W V; —
V1V VUnp " Un V- Vg

’UZ”’UiIO.

Alternatively, can you deduce the formula (say, in the case of an orthonormal basis) from our earlier formula for
the projection matrix? O

Important consequence. If vy, ..., v, is an orthogonal basis of V', and w is in V, then

. w - ’Uj
w=civ]+... +cpvn with ¢j=—=.
’Uj . ’Uj
If the vy, ..., v, are a basis, but not orthogonal, then we have to solve a system of equations to find the ¢;. That

is a lot more work than simply computing a few dot products.

Note. In other words, w decomposes as the sum of its projections onto each basis vector.

Note. If vy, ..., v, are orthonormal, then the denominators are all 1.
. - . 3 - 1 1
Example 66. What is the projection of | 7 | onto W =span{vy,vo} with vy =| —1 |, vo=| 1 |?
4 0 0

Comment. We know how to do this using least squares. (Do it for practice!)
However, realizing that v and w2 are orthogonal makes things easier.

[Actually, here, it is obvious what the projection is going to be if we realized that W is the x-y-plane.]

Solution. (using orthogonality) Because v; and va are orthogonal, the projection is

[ e 1 [N 1 1 3
S I i Ll lilLo 0 0 0
0 0 0 0
‘ projection onto v, ‘projection onto 'vz‘

1 1
Important note. Note that, at this point, we can easily extend [ -1 ],{ 1 ] to an orthogonal basis of R3:
0 0

3 3 0
That is because the error [ 7 ] — [ 7 } —{ 0 ] is orthogonal to both of the existing basis vectors.
4 0 4

1 1 0
Therefore { -1 },[ 1 },[ 0 } is an orthogonal basis of IR3.
0 0 4

This observation underlies the Gram-Schmidt process, which we will discuss next class.
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3 1 0
Example 67. Express | 7 | in terms of the basis | —1 |,| 1 |,| o
4 0 0 1
€T V1 Vo V3

Solution. Because w1, v9, v3 is an orthogonal basis of R?, we get (much as in the previous example):
, V2, U3 g g p P

3 1 1
7 =cy| —1 [+c2| 1 [+c3
4 0 0

orrlEN® Lo o

3 1 1 3 0
HiR I ER R E H
4 0 0 4 1
=t 7o AT ool L]t tor Tl ©
ol e e ]
0 0 0 1 1
‘ projection of @ onto v, pr‘oje,(ition of @ onto wva pr‘ojectiuu of @ onto ‘vd
1 1 0
—4 1 4
=3 ! +?0 L+t ©
0 0 1

Because we spelled out all the details this looks more involved than it is. We only computed 6 dot products!

. 1 10 c1 3 . c —2
Alternative. We could havesolved | —1 1 0 || ¢, |=| 7 [toalsofind| ¢, |=]| 5 |.
0 01 c3 4 c3 4
The numbers are particularly easy here but in general, to find this solution, we have to go through the entire
process of Gaussian elimination. On the other hand, if we have an orthogonal basis, the former approach requires
less work, because it is just computing a few dot products.

3 1 0 1
Example 68. Express | 7 | in terms of the basis | 1 |,| 1 |,| 0
4 0 1 1

Solution. This is not an orthogonal basis, so we cannot proceed as in the previous example.

3 1 0 1 1 01 c1 3
Towrite[7}:cl[1}—&—02[1}+03[0},weneedtosolve{1 1 OM 02:|:|:7:|.
4 0 1 1 01 1 ]| es 4
3
0

C1
Solving that system (do it!), we find [ es } —{

C3
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