Notes for Lecture 13 Wed, 2/11/2026

Review. If vy, ..., v, are orthogonal, the orthogonal projection of w onto span{wvy, ..., v,} is

Example 69.

3 1] [ 2
(a) Project [ 2 } onto I/ =span [ 2 ,[ -1 }
1 1

3 [ 1 2 1
(b) Express [ 2 ] in terms of the basis | 2 ],[ ~1 ],[ 2 ]

1

Solution.

1 2
(a) We note that the vectors { 2 ] [ -1 ] are orthogonal to each other.
e i)

1 2
Comment. If we didn't have an orthogonal basis for W = col([ 2 —1 }) then we would have to solve

Therefore, the projection can be computed as

1 0

1 2 3
the least squares problem [ 2 -1 }n —{ 2 } instead to get the same final result (with more work).
10 1

3 1 2 1
(b) Note that this basis is orthogonal! Therefore, we can compute [ 2 }-%[ 2 ]—i—%{ -1 }—}—%[ 2 }
1 1 0 -5

(We proceed exactly as in the previous part to compute each coefficient as a quotient of dot products.)

‘ Gram-Schmidt

(Gram-Schmidt orthogonalization)

Given a basis w1, wo, ... for W, we produce an orthogonal basis q1, qs, ... for W as follows:

® qi1=wi

jecti f
o qo—wy— (prOJec ion o )

w9 onto qi
. e projection of \ [ projection of
g3 =3 ws onto q; w3 onto qo
[ qs—...

Note. Since g1, go are orthogonal ( projection of ): (projection of) (projection Of).

w3 onto span{qi, g2} ws onto qq w3z onto g2
Important comment. When working numerically on a computer it actually saves time to compute an orthonormal
basis q1, q2, ... by the same approach but always normalizing each g; along the way. The reason this saves time
is that now the projections onto g; only require a single dot product (instead of two). This is called Gram—
Schmidt orthonormalization. When working by hand, it is usually simpler to wait until the end to normalize
(so as to avoid working with square roots).

Note. When normalizing, the orthonormal basis q1, qo, ... is the unique one (up to =+ signs) with the property
that span{qi, g2, ..., qx } = span{w1, wa, ..., wy} forall k=1,2, ...
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1 1
Example 70. Using Gram—Schmidt, find an orthogonal basis for W = span [ 1 ],[ —1 }
1

1 1
Solution. We already have the basis w1 —[ 1 ], w2 —{ —1 } for W. However, that basis is not orthogonal.
1 1

We can construct an orthogonal basis g1, g2 for W as follows:

1
[ g=wi=|1
1

o o — projection of \ 11 1 1 _ 1 24
92 = w2 wso onto q1 ) 71 30 ] 3 ;

Note. g2 is the error of the projection of ws onto g;. This guarantees that it is orthogonal to q;.

On the other hand, since g3 is a combination of w2 and qi, we know that g2 actually is in W.

1 1
We have thus found the orthogonal basis { 1 ], g[ -2 } for W (if we like, we can, of course, drop that %)
1 1
1 1
.. . 1 1

Important comment. By normalizing, we get an orthonormal basis for W: —| 1 |,—| —2 |.

p y & we g ST
Practical comment. When implementing Gram—Schmidt on a computer, it is beneficial (slightly less work)
to normalize each gq; during the Gram—Schmidt process. This typically introduces square roots, which is why
normalizing at the end is usually preferable when working by hand.

Comment. There are, of course, many orthogonal bases q1, g2 for W. Up to the length of the vectors, ours is
the unique one with the property that span{q;} =span{w;} and span{qi, g2} = span{wi, wa}.

A matrix @ has orthonormal columns <= QTQ=1

Why? Let q1, g2, ... be the columns of Q. By the way matrix multiplication works, the entries of Q7(Q are dot
products of these columns:
T
[ — o —[1 |

Ik K

O O =
(== )
o o

Hence, QTQ =1 if and only if qiqu =0 (that is, the columns are orthogonal), for i # j, and qlq; =1 (that is,
the columns are normalized).

1/v3 1/v6
Example 71. Q:{ 1/v3 —2/6 } obtained from Example 70 satisfies Q7Q) = I.

1/V3 1/v6

| The QR decomposition

Just like the LU decomposition encodes the steps of Gaussian elimination, the QR decomposition
encodes the steps of Gram—Schmidt.

(QR decomposition) Every m x n matrix A of rank n can be decomposed as A= Q) R, where

e () has orthonormal columns, (m x n)
e R is upper triangular and invertible. (n xn)
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How to find Q and R?
e  Gram-Schmidt orthonormalization on (columns of) A, to get (columns of) Q

[ ] R: QTA
Why? If A=QR, then QA= QTQ R which simplifies to R= Q”A (since QTQ =1).

The decomposition A = Q R is unique if we require the diagonal entries of R to be positive (and this is exactly
what happens when applying Gram—Schmidt).

Practical comment. Actually, no extra work is needed for computing R. All of its entries have been computed
during Gram—Schmidt.

Variations. We can also arrange things so that @) is an m x m orthogonal matrix (this means @ is square
and has orthonormal columns) and R a m X n upper triangular matrix. This is a tiny bit more work (and not
required for many applications): we need to complement “our” ) with additional orthonormal columns and add
corresponding zero rows to R. For square matrices this makes no difference.

11
Example 72. Determine the QR decomposition of A:l 1 -1 ]
11

Solution. The first step is Gram—Schmidt orthonormalization on the columns of A. We then use the resulting
orthonormal vectors (they need to be normalized!) as the columns of Q.

[1/v3 1/v5 |
We already did Gram—Schmidt in Example 70: from that work, we have Q) :[ 1/V3 —2//6 J

1/v/3 1/6
Hence, R= Q7TA = 1/V3 1/ 1/V3 1 711 =| V3 1/V3 |
' 1/V6 —2/v6 1/V6 || | 4 0 4/V6

Comment. The entries of R have actually all been computed during Gram—Schmidt, so that, if we pay attention,
we could immediately write down R (no extra work required). Looking back at Example 70, can you see this?

1/v3 1/6 11
Check. Indeed, QR:{ 1/? 72/\%6 M \/03 i;ﬁ}:{i —11 } equals A.
1/v3 1//8
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0
Solution. We begin with the (not orthogonal) basis w1 :[ g J, wg:{
0

We then construct an orthogonal basis q1, g2, q3:

* qgr=w1=

S o wo

projection of> B

° quwg—( w2 onto q1

. e — projection of ws e projection of \ [ projection of
93 =ws onto span{qi, g2} / 3 w3 onto qq w3 onto g2

INPFOFBEN
1 9| 0 4o | |1

1 0 0 1
Make sure you understand how g3 was designed to be orthogonal to both g; and g2!

Also note that breaking up the projection onto span{qi, g2} into the projections onto g; and g2 is only
possible because g1 and go are orthogonal.

0 2 0

Hence, g , 8 , 2 is an orthogonal basis of WW.
0 0 1 0 1 0
- ; i 1 of 11to
Important. Normalizing, we obtain an orthonormal basis: oozl
0 0 1
[0 2 1 ]
Example 74. Determine the QR decomposition of A:{ g (1) } J

001

Solution. The first step is Gram—Schmidt orthonormalization on the columns of A. We then use the resulting
orthonormal vectors as the columns of Q.

01 0 '|
We already did Gram—Schmidt in Example 73: from that work, we have Q:{ (1) 8 1/0 5 J
{01 0 0”2?1] [311] 00 1/v2

Hence, R=QTA={10 o 0 oo 1l=l0o2 1|

Loo v ava][§5 1] [oo vz
Comment. As commented earlier, the entries of R have actually all been computed during Gram—-Schmidt,
so that, if we pay attention, we could immediately write down R (no extra work required). Looking back at
Example 73, can you see this?
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