
Notes for Lecture 13 Wed, 2/11/2026

Review. If v1; :::;vn are orthogonal, the orthogonal projection of w onto spanfv1; :::;vng is

ŵ= w �v1
v1 �v1

v1+ :::+ w �vn
vn �vn

vn:

Example 69.

(a) Project

24 3
2
1

35 onto W = span

(24 1
2
1

35;
24 2
¡1
0

35
)
.

(b) Express

24 3
2
1

35 in terms of the basis

24 1
2
1

35;
24 2
¡1
0

35;
24 1

2
¡5

35.
Solution.

(a) We note that the vectors

24 1
2
1

35,
24 2
¡1
0

35 are orthogonal to each other.

Therefore, the projection can be computed as

24 3
2
1

35�
24 1
2
1

35
24 1
2
1

35�
24 1
2
1

35

24 1
2
1

35+
24 3
2
1

35�
24 2
¡1
0

35
24 2
¡1
0

35�
24 2
¡1
0

35

24 2
¡1
0

35= 8

6

24 1
2
1

35+ 4

5

24 2
¡1
0

35.

Comment. If we didn't have an orthogonal basis for W = col

 24 1 2
2 ¡1
1 0

35
!
, then we would have to solve

the least squares problem

24 1 2
2 ¡1
1 0

35x=
24 3
2
1

35 instead to get the same final result (with more work).

(b) Note that this basis is orthogonal! Therefore, we can compute

24 3
2
1

35= 8

6

24 1
2
1

35+ 4

5

24 2
¡1
0

35+ 5

30

24 1
2
¡5

35.
(We proceed exactly as in the previous part to compute each coefficient as a quotient of dot products.)

Gram�Schmidt

(Gram�Schmidt orthogonalization)
Given a basis w1;w2; ::: for W , we produce an orthogonal basis q1; q2; ::: for W as follows:

� q1=w1

� q2=w2¡
�
projection of
w2 onto q1

�

� q3=w3¡
�
projection of
w3 onto q1

�
¡
�
projection of
w3 onto q2

�
� q4= :::

Note. Since q1; q2 are orthogonal,
�

projection of
w3 onto spanfq1; q2g

�
=

�
projection of
w3 onto q1

�
+

�
projection of
w3 onto q2

�
.

Important comment. When working numerically on a computer it actually saves time to compute an orthonormal
basis q1; q2; ::: by the same approach but always normalizing each qi along the way. The reason this saves time
is that now the projections onto qi only require a single dot product (instead of two). This is called Gram�
Schmidt orthonormalization. When working by hand, it is usually simpler to wait until the end to normalize
(so as to avoid working with square roots).
Note. When normalizing, the orthonormal basis q1; q2; ::: is the unique one (up to � signs) with the property
that spanfq1; q2; :::; qkg= spanfw1;w2; :::;wkg for all k=1; 2; :::.
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Example 70. Using Gram�Schmidt, find an orthogonal basis for W = span

(24 1
1
1

35;
24 1
¡1
1

35
)
.

Solution. We already have the basis w1=

24 1
1
1

35, w2=

24 1
¡1
1

35 for W . However, that basis is not orthogonal.

We can construct an orthogonal basis q1; q2 for W as follows:

� q1=w1=

24 1
1
1

35

� q2=w2¡
�
projection of
w2 onto q1

�
=

24 1
¡1
1

35¡ 1

3

24 1
1
1

35= 1

3

24 2
¡4
2

35
Note. q2 is the error of the projection of w2 onto q1. This guarantees that it is orthogonal to q1.
On the other hand, since q2 is a combination of w2 and q1, we know that q2 actually is in W .

We have thus found the orthogonal basis

24 1
1
1

35; 2
3

24 1
¡2
1

35 for W (if we like, we can, of course, drop that 2
3
).

Important comment. By normalizing, we get an orthonormal basis for W : 1

3
p

24 1
1
1

35; 1

6
p

24 1
¡2
1

35.
Practical comment. When implementing Gram�Schmidt on a computer, it is beneficial (slightly less work)
to normalize each qi during the Gram�Schmidt process. This typically introduces square roots, which is why
normalizing at the end is usually preferable when working by hand.
Comment. There are, of course, many orthogonal bases q1; q2 for W . Up to the length of the vectors, ours is
the unique one with the property that spanfq1g= spanfw1g and spanfq1; q2g= spanfw1;w2g.

A matrix Q has orthonormal columns () QTQ= I

Why? Let q1; q2; ::: be the columns of Q. By the way matrix multiplication works, the entries of QTQ are dot
products of these columns: 2664 ¡¡ q1

T ¡¡
¡¡ q2

T ¡¡
���

3775
24 j j
q1 q2 ���
j j

35=
24 1 0 0
0 1 0
0 0 ���

35
Hence, QTQ= I if and only if qi

Tqj=0 (that is, the columns are orthogonal), for i=/ j, and qi
Tqi=1 (that is,

the columns are normalized).

Example 71. Q=

2664 1/ 3
p

1/ 6
p

1/ 3
p

¡2/ 6
p

1/ 3
p

1/ 6
p

3775 obtained from Example 70 satisfies QTQ= I.

The QR decomposition

Just like the LU decomposition encodes the steps of Gaussian elimination, the QR decomposition
encodes the steps of Gram�Schmidt.

(QR decomposition) Every m�n matrix A of rank n can be decomposed as A=QR, where

� Q has orthonormal columns, (m�n)

� R is upper triangular and invertible. (n�n)
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How to find Q and R?

� Gram�Schmidt orthonormalization on (columns of) A, to get (columns of) Q

� R=QTA

Why? If A=QR, then QTA=QTQR which simplifies to R=QTA (since QTQ= I).

The decomposition A=QR is unique if we require the diagonal entries of R to be positive (and this is exactly
what happens when applying Gram�Schmidt).
Practical comment. Actually, no extra work is needed for computing R. All of its entries have been computed
during Gram�Schmidt.
Variations. We can also arrange things so that Q is an m � m orthogonal matrix (this means Q is square
and has orthonormal columns) and R a m� n upper triangular matrix. This is a tiny bit more work (and not
required for many applications): we need to complement �our� Q with additional orthonormal columns and add
corresponding zero rows to R. For square matrices this makes no difference.

Example 72. Determine the QR decomposition of A=
24 1 1
1 ¡1
1 1

35.
Solution. The first step is Gram�Schmidt orthonormalization on the columns of A. We then use the resulting
orthonormal vectors (they need to be normalized!) as the columns of Q.

We already did Gram�Schmidt in Example 70: from that work, we have Q=

2664 1/ 3
p

1/ 6
p

1/ 3
p

¡2/ 6
p

1/ 3
p

1/ 6
p

3775.
Hence, R=QTA=

"
1/ 3
p

1/ 3
p

1/ 3
p

1/ 6
p

¡2/ 6
p

1/ 6
p

#24 1 1
1 ¡1
1 1

35="
3

p
1/ 3
p

0 4/ 6
p

#
.

Comment. The entries of R have actually all been computed during Gram�Schmidt, so that, if we pay attention,
we could immediately write down R (no extra work required). Looking back at Example 70, can you see this?

Check. Indeed, QR=

2664 1/ 3
p

1/ 6
p

1/ 3
p

¡2/ 6
p

1/ 3
p

1/ 6
p

3775" 3
p

1/ 3
p

0 4/ 6
p

#
=

24 1 1
1 ¡1
1 1

35 equals A.
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Example 73. Using Gram�Schmidt, find an orthogonal basis for W = span

8<:
266664
0
3
0
0

377775;
266664
2
1
0
0

377775;
266664
1
1
1
1

377775
9=;.

Solution. We begin with the (not orthogonal) basis w1=

266664
0
3
0
0

377775, w2=

266664
2
1
0
0

377775, w3=

266664
1
1
1
1

377775.
We then construct an orthogonal basis q1; q2; q3:

� q1=w1=

266664
0
3
0
0

377775

� q2=w2¡
�
projection of
w2 onto q1

�
=

266664
2
1
0
0

377775¡ 3

9

266664
0
3
0
0

377775=
266664
2
0
0
0

377775

� q3=w3¡
�
projection of w3

onto spanfq1; q2g

�
=w3¡

�
projection of
w3 onto q1

�
¡
�
projection of
w3 onto q2

�
=

266664
1
1
1
1

377775¡ 3

9

266664
0
3
0
0

377775¡ 2

4

266664
2
0
0
0

377775=
266664
0
0
1
1

377775
Make sure you understand how q3 was designed to be orthogonal to both q1 and q2!
Also note that breaking up the projection onto spanfq1; q2g into the projections onto q1 and q2 is only
possible because q1 and q2 are orthogonal.

Hence,

266664
0
3
0
0

377775;
266664
2
0
0
0

377775;
266664
0
0
1
1

377775 is an orthogonal basis of W .

Important. Normalizing, we obtain an orthonormal basis:

266664
0
1
0
0

377775;
266664
1
0
0
0

377775; 1

2
p

266664
0
0
1
1

377775.

Example 74. Determine the QR decomposition of A=

266664
0 2 1
3 1 1
0 0 1
0 0 1

377775.
Solution. The first step is Gram�Schmidt orthonormalization on the columns of A. We then use the resulting
orthonormal vectors as the columns of Q.

We already did Gram�Schmidt in Example 73: from that work, we have Q=

26666664
0 1 0
1 0 0

0 0 1/ 2
p

0 0 1/ 2
p

37777775.
Hence, R=QTA=

2664 0 1 0 0
1 0 0 0

0 0 1/ 2
p

1/ 2
p

3775
266664
0 2 1
3 1 1
0 0 1
0 0 1

377775=
2664 3 1 1
0 2 1

0 0 2
p

3775.
Comment. As commented earlier, the entries of R have actually all been computed during Gram�Schmidt,
so that, if we pay attention, we could immediately write down R (no extra work required). Looking back at
Example 73, can you see this?

Armin Straub
straub@southalabama.edu

36


