
Notes for Lecture 1 Mon, 1/12/2026

Review: Matrix calculus

Example 1. Matrix multiplication is not commutative!

�
�
1 2
3 4

�
�
�
1 2
0 1

�
=
�
1 4
3 10

�
Multiplication (on the right) with that �almost identity matrix� is performing the column operation
C2+2C1)C2 (i.e. 2 times the first column is added to the second column).

�
�
1 2
0 1

�
�
�
1 2
3 4

�
=
�
7 10
3 4

�
Multiplication (on the left) with the same matrix is performing the row operation R1+2R2)R1.
First comment. This indicates a second interpretation of matrix multiplication: instead of taking linear
combinations of columns of the first matrix, we can also take linear combinations of rows of the second
matrix.
Second comment. The row operations we are doing during Gaussian elimination can be realized by
multiplying (on the left) with �almost identity matrices�.

Example 2. [ 1 2 3 ]

24 1
2
3

35= [ 14 ] whereas

24 1
2
3

35[ 1 2 3 ]=

24 1 2 3
2 4 6
3 6 9

35.
If you know about the dot product, do you see a connection with the first case?

Example 3. Suppose A is m � n and B is p � q. When does AB make sense? In that case,
what are the dimensions of AB?
AB makes sense if n= p. In that case, AB is a m� q matrix.

Example 4.
�
3 1
2 1

��
1 ¡1
¡2 3

�
=
�
1 0
0 1

�
On the RHS we have the identity matrix, usually denoted I or I2 (since it's the 2� 2 identity matrix here).

Hence, the two matrices on the left are inverses of each other:
�
3 1
2 1

�¡1
=

�
1 ¡1
¡2 3

�
,
�

1 ¡1
¡2 3

�¡1
=

�
3 1
2 1

�
.

Example 5. The following formula immediately gives us the inverse of a 2�2 matrix (if it exists).
It is worth remembering!�

a b
c d

�¡1
= 1
ad¡ bc

�
d ¡b
¡c a

�
provided that ad¡ bc=/ 0

Let's check that! 1

ad¡ bc

�
d ¡b
¡c a

��
a b
c d

�
=

1

ad¡ bc

�
ad¡ bc 0

0 ¡cb+ ad

�
= I2

In particular, a 2� 2 matrix

�
a b
c d

�
is invertible () ad¡ bc=/ 0.

Recall that this is the determinant: det
��

a b
c d

��
= ad¡ bc.

In particular:

det(A)= 0 () A is not invertible
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Similarly, for n�n matrices A:

A is invertible (i.e. there is a matrix A¡1 such that AA¡1= I)
() det(A)=/ 0
() Ax= b has a unique solution (namely, x=A¡1b)

Comment. Why is it not common to write 1

A
instead of A¡1?

The notation 1

A
easily leads to ambiguities: for instance, should B

A
mean BA¡1 or should it mean A¡1B?

[Of course, one could try to avoid this by notations like B/A which would more clearly mean BA¡1. It's just
not common and doesn't have any real advantages.]

Example 6.24 1 2 3
4 5 6
7 8 9

3524 1 0 0
¡4 1 0
0 0 1

35=
24 ¡7 2 3
¡16 5 6
¡25 8 9

35
Multiplication (on the right) with that �almost identity matrix� is performing the column operation C1¡ 4C2)
C1 (i.e. ¡4 times the second column is added to the first column).24 1 0 0
¡4 1 0
0 0 1

3524 1 2 3
4 5 6
7 8 9

35=
24 1 2 3
0 ¡3 ¡6
7 8 9

35
Multiplication (on the left) with the same matrix is performing the row operation R2¡ 4R1)R2.
Comment (again). The row operations we are doing during Gaussian elimination can all be realized by multi-
plying (on the left) with �almost identity matrices�.

These matrices are called elementary matrices (they are obtained by performing a single ele-
mentary row operation on an identity matrix).

Elementary matrices are invertible because elementary row operations are reversible:24 1 0 0
2 1 0
0 0 1

35¡1=
24 1 0 0
¡2 1 0
0 0 1

35;
24 1 0 0
0 2 0
0 0 1

35¡1=
2664 1

1

2

1

3775;
24 0 1 0
1 0 0
0 0 1

35¡1=
24 0 1 0
1 0 0
0 0 1

35
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Notes for Lecture 2 Wed, 1/14/2026

Example 7. Let us do Gaussian elimination on A=
�
2 1
4 ¡6

�
until we have an echelon form:

A=

�
2 1
4 ¡6

�
 R2¡2R1)R2

�
2 1
0 ¡8

�
As last class, the row operation can be encoded by multiplication with an �almost identity matrix� E:�

1 0
¡2 1

�
||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

E

�
2 1
4 ¡6

�
||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

A

=

�
2 1
0 ¡8

�
||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

U

Since
�

1 0
¡2 1

�¡1
=

�
1 0
2 1

�
(no calculation needed; this is the row operation R2+2R1)R2 which reverses our

above operation), this means that

A=E¡1U =

�
1 0
2 1

��
2 1
0 ¡8

�
:

We factored A as the product of a lower and an upper triangular matrix!

A=LU is known as the LU decomposition of A.

L is lower triangular, U is upper triangular.

If A is m�n, then L is an invertible lower triangular m�m matrix, and U is a usual echelon form of A.
Every matrix A has a LU decomposition (after possibly swapping some rows of A first).

� The matrix U is just the echelon form of A produced during Gaussian elimination.

� The matrix L can be constructed, entry-by-entry, by simply recording the row operations
used during Gaussian elimination. (No extra work needed!)

Example 8. Determine the LU decomposition of A=
�
1 2
3 4

�
.

Solution. A=
�
1 2
3 4

�
 R2¡3R1)R2

�
1 2
0 ¡2

�
translates into

�
1 0
¡3 1

��
1 2
3 4

�
=

�
1 2
0 ¡2

�
.

Since
�

1 0
¡3 1

�¡1
=

�
1 0
3 1

�
(no calculation needed!), we therefore have A=

�
1 0
3 1

��
1 2
0 ¡2

�
.

Example 9. Determine the LU decomposition of A=

24 1 1 2 1
3 2 7 2

¡2 6 ¡3 1

35.
Solution. We perform Gaussian elimination until we arrive at an echelon form:24 1 1 2 1

3 2 7 2
¡2 6 ¡3 1

35  
R2¡3R1)R2

R3+2R1)R3

24 1 1 2 1
0 ¡1 1 ¡1
0 8 1 3

35  R3+8R2)R3

24 1 1 2 1
0 ¡1 1 ¡1
0 0 9 ¡5

35
Observe that we can reverse both of these steps using the row operations R2+3R1)R2

R3¡ 2R1¡ 8R2)R3
.

Encoding these in L, the corresponding LU decomposition of A is

A=LU =

24 1
3 1
¡2 ¡8 1

3524 1 1 2 1
¡1 1 ¡1

9 ¡5

35:
Note that no further computation was required to obtain L. (The entries in the matrix L are precisely the
(negative) coefficients in the original row operations.)
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Comment. By contrast, combining the operations R2¡ 3R1)R2
R3+2R1)R3

and R3+8R2)R3 requires computation.

That is because we changeR2 in the first step, and then use the changedR2 in the second step. Indeed, note that24 1
0 1
0 8 1

3524 1
¡3 1
2 0 1

35=
24 1
¡3 1
¡22 8 1

35;
so the combined operations are R2¡ 3R1)R2

R3¡ 22R1+8R2)R3
(you can also see that directly from the operations).

On the other hand, there was no such complication when combining the reversed operations:

Combining R3¡ 8R2)R3 and
R2+3R1)R2
R3¡ 2R1)R3

simply results in R2+3R1)R2
R3¡ 2R1¡ 8R2)R3

, as used above.

The difference is that, here, we change R3 in the first step but then don't use the changed R3 in the second
step. In terms of matrix multiplication, we have24 1

3 1
¡2 0 1

3524 1
0 1
0 ¡8 1

35=
24 1

3 1
¡2 ¡8 1

35;
where, because of their special form, the product of the two lower triangular matrices is just �putting together�
the entries (unlike in the non-reversed product).

Review. The RREF (row-reduced echelon form) of A is obtained from an echelon form by

� scaling the pivots to 1, and then

� eliminating the entries above the pivots.

A typical RREF has the shape [� represents an entry that could be anything]24 1 � 0 � � 0 �
1 � � 0 �

1 �

35
Example 10. Let's compute the RREF of the 3� 4 matrix from Example 9.
Solution. 24 1 1 2 1

3 2 7 2
¡2 6 ¡3 1

35  
R2¡3R1)R2

R3+2R1)R3

24 1 1 2 1
0 ¡1 1 ¡1
0 8 1 3

35  R3+8R2)R3

24 1 1 2 1
0 ¡1 1 ¡1
0 0 9 ¡5

35

 
¡R2)R2
1
9
R3)R3

2664 1 1 2 1
0 1 ¡1 1

0 0 1 ¡5

9

3775  
R1¡2R3)R1

R2+R3)R2

26666664
1 1 0

19
9

0 1 0
4

9

0 0 1 ¡5

9

37777775  R1¡R2)R1

26666664
1 0 0

5

3

0 1 0
4

9

0 0 1 ¡5

9

37777775
Example 11. The RREF of A=

�
2 1
4 ¡6

�
from earlier is the 2� 2 identity matrix.

Comment. That's not surprising: A square matrix is invertible if and only if its RREF is the identity matrix. If
that isn't obvious to you, think about how you invert a matrix using Gaussian elimination (reviewed next).
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Notes for Lecture 3 Fri, 1/16/2026

Review. Recall the Gauss�Jordan method of computing A¡1. Starting with the augmented matrix
[A j I], we do Gaussian elimination until we obtain the RREF, which will be of the form [I j A¡1]
so that we can read off A¡1.
Why does that work? By our discussion, the steps of Gaussian elimination can be expressed by multiplication
(on the left) with a matrix B. Only looking at the first part of the augmented matrix, and since the RREF of
an invertible matrix is I, we have BA= I, which means that we must have B = A¡1. The other part of the
augmented matrix (which is I initially) gets multiplied with B=A¡1 as well, so that, in the end, it is B I=A¡1.
That's why we can read off A¡1!

For instance. To invert
�
2 1
4 ¡6

�
using the Gauss�Jordan method, we would proceed as follows:

�
2 1 1 0
4 ¡6 0 1

�
 R2¡2R1)R2

�
2 1 1 0
0 ¡8 ¡2 1

�
 

1
2
R1)R1

¡1
8
R2)R2

24 1
1

2

1

2
0

0 1
1

4
¡1

8

35  
R1¡ 1

2
R2)R1

24 1 0
3

8

1

16

0 1
1

4
¡1

8

35
We conclude that

�
2 1
4 ¡6

�¡1
=

24 3
8

1
16

1
4
¡1
8

35.
Of course, for 2� 2 matrices it is much simpler to use the formula

�
a b
c d

�¡1
=

1

ad¡ bc

�
d ¡b
¡c a

�
.

Review: Vector spaces, bases, dimension, null spaces

Review.

� Vectors are things that can be added and scaled.

� Hence, given vectors v1; :::;vn, the most general we can do is form the linear combination
�1v1 + ::: + �nvn. The set of all these linear combinations is the span of v1; :::; vn,
denoted by spanfv1; :::;vng.

� Vector spaces are spans.

Equivalently. Vector spaces are sets of vectors so that the result of adding and scaling remains within
that set.
Homework. Of course, the latter is a very informal statement. Revisit the formal definition, probably
consisting of a list of axioms, and observe how that matches with the above (for instance, several of
the axioms are concerned with addition and scaling satisfying the �expected� rules).

� Recall that vectors from a vector space V form a basis of V if and only if

� the vectors span V , and

� the vectors are (linearly) independent.

Equivalently. v1; :::;vn from V form a basis of V if and only if every vector in V can be expressed as
a unique linear combination of v1; :::;vn.
Just checking. Make sure that you can define precisely what it means for vectors v1; :::; vn to be
independent.

� The dimension of a vector space V is the number of vectors in a basis for V .

No matter what basis one chooses for V , it always has the same number of vectors.
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Example 12. R3 is the vector space of all vectors with 3 real entries.

R itself refers to the set of real numbers. We will later also discuss C, the set of complex numbers.

The standard basis of R3 is

24 1
0
0

35;
24 0
1
0

35;
24 0
0
1

35. The dimension of R3 is 3.

Review. The null space null(A) of a matrix A consists of those vectors x such that Ax=0.
Make sure that you see why null(A) is a vector space. [For instance, if you pick two vectors in null(A) why is
it that the sum of them is in null(A) again?]

Example 13. What is null(A) if the matrix A is invertible?

Solution. If A is invertible, then Ax=0 has the unique solution x=A¡10=0.
Hence, null(A)= f0g which is the trivial vector space (consisting of only the null vector) and has dimension 0.

Example 14. Compute a basis for null(A) where A=
24 ¡1 0 2

2 ¡3 2
1 0 ¡2

35.
Solution. We perform row operations and obtain

null

0@24 ¡1 0 2
2 ¡3 2
1 0 ¡2

351A =

R2+2R1)R2
R3+R1)R3

null

0@24 ¡1 0 2
0 ¡3 6
0 0 0

351A =

¡R1)R1

¡1
3
R2)R2

null

0@24 1 0 ¡2
0 1 ¡2
0 0 0

351A:
From the RREF, we can now read off the general solution to Ax=0:

� x1 and x2 are pivot variables. [For each we have an equation expressing it in terms of the other variables;
for instance, x1¡ 2x3=0 tells us that x1=2x3.]

� x3 is a free variable. [There is no equation forcing a value on x3.]

� Hence, without computation, we see that the general solution is

24 2x3
2x3
x3

35.
In other words, a basis is

24 2
2
1

35.
Comment. We are starting with the three equations ¡x1 + 2x3 = 0, 2x1 ¡ 3x2 + 2x3 = 0, x1 ¡ 2x3 = 0.
Performing row operations on the matrix is the same as combining these equations (with the objective to form
simpler equations by eliminating variables).

Example 15. Compute a basis for null

0@24 2 0 2
2 0 2
1 0 1

351A.
Solution.

null

0@24 2 0 2
2 0 2
1 0 1

351A =

R2¡R1)R2

R3¡ 1
2
R1)R3

null

0@24 2 0 2
0 0 0
0 0 0

351A =
1
2
R1)R1

null

0@24 1 0 1
0 0 0
0 0 0

351A

This time, x2 and x3 are free variables. The general solution is

24 ¡x3x2
x3

35=x2

24 0
1
0

35+ x3

24 ¡10
1

35.
Hence, a basis is

24 0
1
0

35;
24 ¡10

1

35.
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Notes for Lecture 4 Wed, 1/21/2026

Review: Eigenvalues and eigenvectors

If Ax=�x (and x=/ 0), then x is an eigenvector of A with eigenvalue � (just a number).

Note that for the equation Ax=�x to make sense, A needs to be a square matrix (i.e. n�n).

Key observation:

Ax=�x
() Ax¡�x=0
() (A¡�I)x=0
This homogeneous system has a nontrivial solution x if and only if det(A¡�I)= 0.

To find eigenvectors and eigenvalues of A:

(a) First, find the eigenvalues � by solving det(A¡�I)= 0.
det(A¡�I) is a polynomial in �, called the characteristic polynomial of A.

(b) Then, for each eigenvalue �, find corresponding eigenvectors by solving (A¡�I)x=0.
More precisely, we find a basis of eigenvectors for the �-eigenspace null(A¡�I).

Example 16. A=

24 4 0 2
2 2 2
1 0 3

35 has one eigenvector that is �easy� to see. Do you see it?

Solution. Note that A

24 0
1
0

35=
24 0
2
0

35=2

24 0
1
0

35. Hence,
24 0
1
0

35 is a 2-eigenvector.

Just for contrast. Note that A

24 0
0
1

35=
24 2
2
3

35=/ �
24 0
0
1

35. Hence,
24 0
0
1

35 is not an eigenvector.

Suppose that A is n�n and has independent eigenvectors x1; :::;xn.

Then A can be diagonalized as A=PDP¡1, where

� the columns of P are the eigenvectors, and

� the diagonal matrix D has the eigenvalues on the diagonal.

Such a diagonalization is possible if and only if A has enough (independent) eigenvectors.
Comment. If you don't quite recall why these choices result in the diagonalization A=PDP¡1, note that the
diagonalization is equivalent to AP =PD.

� Put the eigenvectors x1; :::;xn as columns into a matrix P .

Axi=�ixi =) A

24 j j
x1 ��� xn
j j

35 =

24 j j
�1x1 ��� �nxn
j j

35

=

24 j j
x1 ��� xn
j j

35
2664 �1

���
�n

3775
� In summary: AP =PD
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Example 17. Let A=

24 4 0 2
2 2 2
1 0 3

35.
(a) Find the eigenvalues and bases for the eigenspaces of A.

(b) Diagonalize A. That is, determine matrices P and D such that A=PDP¡1.

Solution.

(a) By expanding by the second column, we find that the characteristic polynomial det(A¡�I) is��������������
4¡� 0 2

2 2¡� 2
1 0 3¡�

��������������=(2¡�)
�������� 4¡� 2

1 3¡�

��������=(2¡�)[(4¡�)(3¡�)¡ 2]= (2¡�)2(5¡�):

Hence, the eigenvalues are �=2 (with multiplicity 2) and �=5.
Comment. At this point, we know that we will find one eigenvector for � = 5 (more precisely, the 5-
eigenspace definitely has dimension 1). On the other hand, the 2-eigenspace might have dimension 2 or
1. In order for A to be diagonalizable, the 2-eigenspace must have dimension 2. (Why?!)

� The 5-eigenspace is null

0@24 ¡1 0 2
2 ¡3 2
1 0 ¡2

351A. Proceeding as in Example 14, we obtain

null

0@24 ¡1 0 2
2 ¡3 2
1 0 ¡2

351A =
RREF

null

0@24 1 0 ¡2
0 1 ¡2
0 0 0

351A= span

8<:
24 2
2
1

359=;:

In other words, the 5-eigenspace has basis

24 2
2
1

35.
� The 2-eigenspace is null

0@24 2 0 2
2 0 2
1 0 1

351A. Proceeding as in Example 15, we obtain

null

0@24 2 0 2
2 0 2
1 0 1

351A =
RREF

null

0@24 1 0 1
0 0 0
0 0 0

351A= span

8<:
24 0
1
0

35;
24 ¡10

1

359=;
In other words, the 2-eigenspace has basis

24 0
1
0

35;
24 ¡10

1

35.
Comment. So, indeed, the 2-eigenspace has dimension 2. In particular, A is diagonalizable.

(b) A possible choice is P =

24 2 0 ¡1
2 1 0
1 0 1

35, D=

24 5 0 0
0 2 0
0 0 2

35.
Comment. However, many other choices are possible and correct. For instance, the order of the eigen-
values in D doesn't matter (as long as the same order is used for P ). Also, for P , the columns can be
chosen to be any other set of eigenvectors.
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Notes for Lecture 5 Fri, 1/23/2026

Example 18. (extra practice) Diagonalize, if possible, the matrices

A=

24 3 4 1
0 2 0
1 4 3

35, B=

24 0 0 1
0 0 0
0 0 0

35, C =

24 1 0 1
0 0 0
0 0 0

35:

Solution. For instance, A=PDP¡1 with P =

24 1 ¡4 ¡1
0 1 0
1 0 1

35 and D=

24 4
2
2

35. B is not diagonalizable.

For instance, C =PDP¡1 with P =

24 1 0 ¡1
0 1 0
0 0 1

35 and D=

24 1
0
0

35.

Review: Computing determinants using cofactor expansion

Review. Let A be an n�n matrix. The determinant of A, written as det(A) or jAj, is a number
with the property that:

det(A)=/ 0 () A is invertible
() Ax= b has a (unique) solution x (for all b)
() Ax=0 is only solved by x=0

Example 19.
�������� a b
c d

��������= ad¡ bc

Example 20. Compute

��������������
1 2 0
3 ¡1 2
2 0 1

�������������� by cofactor expansion.
Solution. We expand by the first row:��������������

1 2 0
3 ¡1 2
2 0 1

��������������=1 �

��������������
+
¡1 2
0 1

��������������¡ 2 �
��������������

¡
3 2
2 1

��������������+0 �

��������������
+

3 ¡1
2 0

��������������
=
i.e.

1 �
�������� ¡1 2
0 1

��������¡ 2 � �������� 3 2
2 1

��������+0 �
�������� 3 ¡1
2 0

��������=1 � (¡1)¡ 2 � (¡1)+0=1

Each term in the cofactor expansion is �1 times an entry times a smaller determinant (row and
column of entry deleted).

The �1 is assigned to each entry according to

266664
+ ¡ + ���
¡ + ¡
+ ¡ +
��� ���

377775.
Solution. We expand by the second column:��������������

1 2 0
3 ¡1 2
2 0 1

��������������=¡2 �
��������������

¡
3 2
2 1

��������������+(¡1) �

��������������
1 0
+

2 1

��������������¡ 0 �
��������������
1 0
3 2
¡

��������������
= ¡ 2 � (¡1)+ (¡1) � 1¡ 0=1
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Example 21. Compute

������������������
1 0 3 4
0 2 1 5
0 0 2 1
2 0 8 5

������������������.
Solution. We can expand by the second column:������������������
1 0 3 4
0 2 1 5
0 0 2 1
2 0 8 5

������������������=¡0
��������������
0 1 5
0 2 1
2 8 5

��������������+2

��������������
1 3 4
0 2 1
2 8 5

��������������¡ 0
��������������
1 3 4
0 1 5
2 8 5

��������������+0

��������������
1 3 4
0 1 5
0 2 1

��������������
[Of course, you don't have to spell out the 3� 3 matrices that get multiplied with 0.]
We can compute the remaining 3� 3 matrix in any way we prefer. One option is to expand by the first column:

2

��������������
1 3 4
0 2 1
2 8 5

��������������=2

�
+1

�������� 2 1
8 5

��������+2
�������� 3 4
2 1

��������
�
=2(1 � 2+2 � (¡5))=¡16

Comment. For cofactor expansion, choosing to expand by the second column is the best choice because this
column has more zeros than any other column or row.

The determinant of a triangular matrix is the product of the diagonal entries.

Why? Can you explain this (you can use the next example) using cofactor expansion?

Example 22. Compute

������������������
1 0 3 ¡1
0 3 1 5
0 0 ¡2 1
0 0 0 5

������������������.

Solution. Since the matrix is (upper) triangular,

������������������
1 0 3 ¡1
3 1 5
¡2 1

5

������������������=1 � 3 � (¡2) � 5=¡30.

Review.

� Effect of row (or column) operations on determinant.

� det(AB)= det(A)det(B)

� In particular, the LU decomposition provides us with a way to compute determinants:

If A=LU , then det(A)=det(L)det(U) and the latter determinants are just products of
diagonal entries (because both L and U are triangular).

Comment. Unless a row swap is required, we can compute the LU decomposition of A = LU using
only row operations of the form Ri+ cRj)Ri (those don't change the determinant!).
In that case, the matrix L will have 1's on the diagonal. In particular, det(L)= 1.
Consequently, in that case, det(A)=det(U).
Practical comment. For larger matrices, cofactor expansion is a terribly inefficient way of computing
determinants. Instead, Gaussian elimination (i.e. LU decomposition) is much more efficient.
On the other hand, cofactor expansion is a good choice when working by hand with small matrices.
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Notes for Lecture 6 Mon, 1/26/2026

Example 23. (review) If A=
24 1 4
2 5
3 6

35, then its transpose is AT =
�
1 2 3
4 5 6

�
.

Recall that (AB)T =BTAT . This reflects the fact that, in the column-centric versus the row-centric interpre-
tation of matrix multiplication, the order of the matrices is reversed.
Comment. When working with complex numbers, the fundamental role is not played by the transpose but by
the conjugate transpose instead (we'll see that in our discussion of orthogonality): A�=AT .

For instance, if A=
�
1¡ 3i 5i
2+ i 3

�
, then A�=

�
1+3i 2¡ i
¡5i 3

�
.

Orthogonality

The inner product and distances

Definition 24. The inner product (or dot product) of v, w in Rn:

v �w = vTw= v1w1+ :::+ vnwn:

Because we can think of this as a special case of the matrix product, it satisfies the basic rules like associativity
and distributivity.
In addition: v �w=w �v.

Example 25.
24 1
2
3

35�
24 2
¡1
4

35=2¡ 2+ 12= 12

Definition 26.

� The norm (or length) of a vector v in Rn is

kvk = v �v
p

= v1
2+ :::+ vn

2
p

:

� The distance between points v and w in Rn is

dist(v ;w) = kv¡wk:

v

w

v −w

Example 27. For instance, in R2, dist
��

x1
y1

�
;
�
x2
y2

��
=






� x1¡x2

y1¡ y2

�





= (x1¡x2)2+(y1¡ y2)
2

q
.

Example 28. Write kv¡wk2 as a dot product, and multiply it out.

Solution. kv¡wk2=(v¡w) � (v¡w)=v �v¡v �w¡w �v+w �w= kvk2¡ 2v �w+ kwk2

Comment. This is a vector version of (x¡ y)2= x2¡ 2xy+ y2.
The reason we were careful and first wrote ¡v �w¡w �v before simplifying it to ¡2v �w is that we should not
take rules such as v �w=w �v for granted. For instance, for the cross product v�w, that you may have seen
in Calculus, we have v�w=/ w�v (instead, v�w=¡w�v).

Armin Straub
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Orthogonal vectors

Definition 29. v and w in Rn are orthogonal if

v �w=0:

Why? How is this related to our understanding of right angles?
Pythagoras!
v and w are orthogonal
() kvk2+ kwk2= kv¡wk2||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

=kvk2¡2v�w+kwk2
(by previous example)

() ¡2v �w=0

() v �w=0

v

w

v −w

Definition 30. We say that two subspaces V and W of Rn are orthogonal if and only if every
vector in V is orthogonal to every vector in W .

The orthogonal complement of V is the space V ? of all vectors that are orthogonal to V .
Exercise. Show that the orthogonal complement is indeed a vector space. Alternatively, this follows from our
discussion in the next example which leads to Theorem 32. Namely, every space V can be written as V =col(A)
for a suitable matrix A (for instance, we can choose the columns of A to be basis vectors of V ). It then follows
that V ?=null(AT) (which is clearly a space).

Example 31. Determine a basis for the orthogonal complement of V = span

(24 1
2
1

35;
24 3
1
2

35
)
.

Solution. The orthogonal complement V ? consists of all vectors

24 x1
x2
x3

35 that are orthogonal to
24 1
2
1

35 and
24 3
1
2

35.
Using the dot product, this means we must have

24 1
2
1

35�
24 x1
x2
x3

35=0 as well as

24 3
1
2

35�
24 x1
x2
x3

35=0.

Note that this is equivalent to the equations 1x1+2x2+1x3=0 and 3x1+1x2+2x3=0.

In matrix-vector form, these two equations combine to
�
1 2 1
3 1 2

�24 x1
x2
x3

35=�
0
0

�
.

This is the same as saying that

24 x1
x2
x3

35 has to be in null
��

1 2 1
3 1 2

��
. This means that V ?=null

��
1 2 1
3 1 2

��
.

[Note that we have done no computations up to this point! Instead, we have derived Theorem 32 below.]

We compute (fill in the work!) that V ?=null
��

1 2 1
3 1 2

��
=

RREF
null
��

1 0 3/5
0 1 1/5

��
= span

(24 ¡3/5¡1/5
1

35
)
.

Check.

24 ¡3/5¡1/5
1

35 is indeed orthogonal to both

24 1
2
1

35 and
24 3
1
2

35.
Note. If

24 x1
x2
x3

35 is orthogonal to both basis vectors

24 1
2
1

35 and
24 3
1
2

35, then it is orthogonal to every vector in V .

Indeed, vectors in V are of the form v=a

24 1
2
1

35+b
24 3
1
2

35and we have v �
24 x1
x2
x3

35=a
24 1
2
1

35�
24 x1
x2
x3

35
=0

+b

24 3
1
2

35�
24 x1
x2
x3

35
=0

=0.

Just to make sure. Why is it geometrically clear that the orthogonal complement of V is 1-dimensional?

Armin Straub
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The following theorem follows by the same reasoning that we used in the previous example.

In that example, we started with V = col

 24 1 3
2 1
1 2

35
!
and found that V ?=null

��
1 2 1
3 1 2

��
.

Theorem 32. If V = col(A), then V ?= null(AT).
In particular, if V is a subspace of Rn with dim(V )= r, then dim(V ?)=n¡ r.

For short. col(A)?=null(AT )
Note that the second part can be written as dim(V )+dim(V ?)=n.
To see that this is true, suppose we choose the columns of A to be a basis of V . If V is a subspace of Rn with
dim(V )= r, then A is a r�n matrix with r pivot columns. Correspondingly, AT is a n� r matrix with r pivot
rows. Since n>r there are n¡r free variables when computing a basis for null(AT). Hence, dim(V ?)=n¡ r.

Example 33. Suppose that V is spanned by 3 linearly independent vectors in R5. Determine the
dimension of V and its orthogonal complement V ?.

Solution. This means that dimV =3. By Theorem 32, we have dimV ?=5¡ 3=2.

Example 34. Determine a basis for the orthogonal complement of (the span of)

24 1
2
1

35.
Solution. Here, V = span

(24 1
2
1

35
)

and we are looking for the orthogonal complement V ?.

Since V = col

 24 1
2
1

35
!
, it follows from Theorem 32 that V ?=null([ 1 2 1 ]).

Computing a basis for null([ 1 2 1 ]) is easy since [ 1 2 1 ] is already in RREF.

Note that the general solution to [ 1 2 1 ]x=0 is

24 ¡2s¡ ts
t

35= s

24 ¡21
0

35+ t

24 ¡10
1

35.
A basis for V ?=null([ 1 2 1 ]) therefore is

24 ¡21
0

35;
24 ¡10

1

35.

Check. We easily check (do it!) that both of these are indeed orthogonal to the original vector

24 1
2
1

35.

Armin Straub
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Notes for Lecture 7 Wed, 1/28/2026

The fundamental theorem

Review. The four fundamental subspaces associated with a matrix A are

col(A); row(A); null(A); null(AT):

Note that row(A)= col(AT ). (In particular, we usually write vectors in row(A) as column vectors.)

Comment. null(AT) is called the left null space of A.
Why that name? Recall that, by definition x is in null(A) () Ax=0.

Likewise, x is in null(AT ) () ATx=0 () xTA=0.

[Recall that (AB)T =BTAT . In particular, (ATx)T =xTA, which is what we used in the last equivalence.]

Review. The rank of a matrix is the number of pivots in its RREF.
Equivalently, as showcased in the next result, the rank is the dimension of either the column or the row space.

Theorem 35. (Fundamental Theorem of Linear Algebra, Part I)

Let A be an m�n matrix of rank r.

� dim col(A)= r (subspace of Rm)

� dim row(A)= r (subspace of Rn) row(A)= col(AT)

� dimnull(A)=n¡ r (subspace of Rn)

� dimnull(AT)=m¡ r (subspace of Rm)

Example 36. Let A=
24 1 2
2 4
3 6

35. Determine bases for all four fundamental subspaces.

Solution. Make sure that, for such a simple matrix, you can see all of these that at a glance!

col(A)= span

(24 1
2
3

35
)
, row(A)= span

n�
1
2

�o
, null(A)= span

n�
¡2
1

�o
, null(AT)= span

(24 ¡21
0

35;
24 ¡30

1

35
)

Important observation. The basis vectors for row(A) and null(A) are orthogonal!
�
¡2
1

�
�
�
1
2

�
=0

The same is true for the basis vectors for col(A) and null(AT ):
24 1
2
3

35�
24 ¡21

0

35=0 and

24 1
2
3

35�
24 ¡30

1

35=0

Always. Vectors in null(A) are orthogonal to vectors in row(A). In short, null(A) is orthogonal to row(A).
Why? Suppose that x is in null(A). That is, Ax=0. But think about what Ax=0 means (row-product rule).
It means that the inner product of every row with x is zero. Which implies that x is orthogonal to the row space.

Theorem 37. (Fundamental Theorem of Linear Algebra, Part II)

� null(A) is orthogonal to row(A). (both subspaces of Rn)

Note that dimnull(A)+dimrow(A)=n. Hence, the two spaces are orthogonal complements.

� null(AT) is orthogonal to col(A).
Again, the two spaces are orthogonal complements. (This is just the first part with A replaced by AT .)

Armin Straub
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Example 38. Let A=
24 1 2 1 4
2 4 0 2
3 6 0 3

35. Check that null(A) and row(A) are orthogonal complements.

Solution.24 1 2 1 4
2 4 0 2
3 6 0 3

35  
R2¡2R1)R2

R3¡3R1)R3

24 1 2 1 4
0 0 ¡2 ¡6
0 0 ¡3 ¡9

35  
R3¡ 3

2
R2)R3

24 1 2 1 4
0 0 ¡2 ¡6
0 0 0 0

35
 

¡1
2
R2)R2

24 1 2 1 4
0 0 1 3
0 0 0 0

35  R1¡R2)R1

24 1 2 0 1
0 0 1 3
0 0 0 0

35
Hence, null(A)= span

8>><>>:
266664
¡2
1
0
0

377775;
266664
¡1
0
¡3
1

377775
9>>=>>;, row(A)= span

8>><>>:
266664
1
2
0
1

377775;
266664
0
0
1
3

377775
9>>=>>;.

null(A) and row(A) are indeed orthogonal, as certified by:266664
¡2
1
0
0

377775�
266664
1
2
0
1

377775=0;

266664
¡2
1
0
0

377775�
266664
0
0
1
3

377775=0;

266664
¡1
0
¡3
1

377775�
266664
1
2
0
1

377775=0;

266664
¡1
0
¡3
1

377775�
266664
0
0
1
3

377775=0:

In fact, null(A) and row(A) are orthogonal complements because the dimensions add up to 2+2=4.

In particular,

266664
¡2
1
0
0

377775;
266664
¡1
0
¡3
1

377775;
266664
1
2
0
1

377775;
266664
0
0
1
3

377775 form a basis of all of R4.

Example 39. (extra) Determine bases for all four fundamental subspaces of

A=

24 1 2 1 3
2 4 0 1
3 6 0 1

35:
Verify all parts of the Fundamental Theorem, especially that null(A) and row(A) (as well as
null(AT) and col(A)) are orthogonal complements.

Partial solution. One can almost see that rank(A) = 3. Hence, the dimensions of the fundamental subspaces
are :::

Armin Straub
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Notes for Lecture 8 Fri, 1/30/2026

Consistency of a system of equations

Example 40. (warmup)
24 1 2
3 1
0 5

35�� x1
x2

�
=x1

24 1
3
0

35+x2

24 2
1
5

35
Note that this means that the system
of equations

x1 + 2x2 = 1
3x1 + x2 = 1

5x2 = 1
can also be written as

24 1 2
3 1
0 5

35�� x1
x2

�
=

24 1
1
1

35:
[This was the motivation for introducing matrix-vector multiplication.]

In the same way, any system can be written as Ax= b, where A is a matrix and b a vector.
In particular, this makes it obvious that:

Ax= b is consistent () b is in col(A)

Recall that, by the FTLA, col(A) and null(AT) are orthogonal complements.

Theorem 41. Ax= b is consistent () b is orthogonal to null(AT)

Proof. Ax= b is consistent () b is in col(A) ()
FTLA

b is orthogonal to null(AT)

Note. b is orthogonal to null(AT) means that yTb=0 whenever yTA=0. Why?!

Example 42. Let A=
24 1 2
3 1
0 5

35. For which b does Ax= b have a solution?

Solution. (old) 24 1 2 b1
3 1 b2
0 5 b3

35  R2¡3R1)R2

24 1 2 b1
0 ¡5 ¡3b1+ b2
0 5 b3

35  R3+R2)R3

24 1 2 b1
0 ¡5 ¡3b1+ b2
0 0 ¡3b1+ b2+ b3

35
So, Ax= b is consistent if and only if ¡3b1+ b2+ b3=0.

Solution. (new) We determine a basis for null(AT):�
1 3 0
2 1 5

�
 R2¡2R1)R2

�
1 3 0
0 ¡5 5

�
 ¡1

5
R2)R2

�
1 3 0
0 1 ¡1

�
 R1¡3R2)R1

�
1 0 3
0 1 ¡1

�

We read off from the RREF that null(AT) has basis
24 ¡31

1

35.
b has to be orthogonal to null(AT ). That is, b �

24 ¡31
1

35=0. As above!
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Comment. Below is how we can use Sage to (try and) solve Ax= b for b=

24 1
1
2

35 and b=
24 1
1
1

35.
>>> A = matrix([[1,2],[3,1],[0,5]])

>>> A.solve_right(vector([1,1,2]))�
1
5
;
2
5

�
>>> A.solve_right(vector([1,1,1]))

ValueError: matrix equation has no solutions

During handling of the above exception, another exception occurred:

ValueError: matrix equation has no solutions

Armin Straub
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Notes for Lecture 9 Mon, 2/2/2026

Least squares

Example 43. Not all linear systems have solutions.

In fact, for many applications, data needs to be fitted and there is no hope
for a perfect match.
For instance, Ax= b with 24 1 2

3 1
0 5

35x=
24 1
1
1

35
has no solution:

�
24 1
1
1

35 is not in col(A) since
24 1
1
1

35�
24 ¡31

1

35=/ 0 (see previous example).

� Instead of giving up, we want the x which makesAx and b as close as possible.

� Such x is characterized by the error Ax¡ b being orthogonal to col(A)
(i.e. all possible Ax).

Ax

b

Definition 44. x̂ is a least squares solution of the system Ax= b if x̂ is such that Ax̂¡ b is
as small as possible (i.e. minimal norm).

� If Ax= b is consistent, then x̂ is just an ordinary solution. (in that case, Ax̂¡ b= 0)

� Interesting case: Ax= b is inconsistent. (in particular, if the system is overdetermined)

The normal equations

The following result provides a straightforward recipe (thanks to the FTLA) to find least squares
solutions for all systems Ax= b.

Theorem 45. x̂ is a least squares solution of Ax= b
() ATAx̂=ATb (the normal equations)

Proof.
x̂ is a least squares solution of Ax= b
() Ax̂¡ b is as small as possible

() Ax̂¡ b is orthogonal to col(A)

()
FTLA

Ax̂¡ b is in null(AT)
() AT(Ax̂¡ b)=0
() ATAx̂=ATb �

Armin Straub
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Example 46. Find the least squares solution to Ax= b, where

A=

24 1 1
¡1 1
0 0

35; b=

24 2
1
1

35:
Solution. First, ATA=

�
1 ¡1 0
1 1 0

�24 1 1
¡1 1
0 0

35=�
2 0
0 2

�
and ATb=

�
1 ¡1 0
1 1 0

�24 2
1
1

35=�
1
3

�
.

Hence, the normal equations ATAx̂=ATb take the form
�
2 0
0 2

�
x̂=

�
1
3

�
.

Solving, we immediately find x̂=
�
1/2
3/2

�
.

Check. Since Ax̂=

24 2
1
0

35, the error is Ax̂¡ b=
24 0

0
¡1

35. Recall that the error must be orthogonal to col(A)!

This error is indeed orthogonal to col(A) because
24 0

0
¡1

35�
24 1
¡1
0

35=0 and

24 0
0
¡1

35�
24 1
1
0

35=0.

Comment. Why are the normal equations so particularly simple (compare with example below for the typical
case) here? Note how each entry of the product ATA is computed as the dot product of two columns of A
(matrix products of a row of AT times a column of A). That ATA is a diagonal matrix reflects the fact that
the two columns of A are orthogonal to each other.

Example 47. Find the least squares solution to Ax= b, where

A=

24 1 2
3 1
0 5

35; b=

24 1
1
1

35:
Solution. First, ATA=

�
1 3 0
2 1 5

�24 1 2
3 1
0 5

35=�
10 5
5 30

�
and ATb=

�
1 3 0
2 1 5

�24 1
1
1

35=�
4
8

�
.

Hence, the normal equations ATAx̂=ATb take the form
�
10 5
5 30

�
x̂=

�
4
8

�
.

Since
�
10 5
5 30

�¡1
=

1

275

�
30 ¡5
¡5 10

�
=

1

55

�
6 ¡1
¡1 2

�
, we find x̂= 1

55

�
6 ¡1
¡1 2

��
4
8

�
=

1

55

�
16
12

�
.

Check. Since Ax̂= 1

55

24 40
60
60

35, the error Ax̂¡ b= 1

55

24 ¡15
5
5

35= 1

11

24 ¡31
1

35must be orthogonal to col(A).

The error is indeed orthogonal to col(A) because
24 1
3
0

35� 111
24 ¡31

1

35=0 and

24 2
1
5

35� 111
24 ¡31

1

35=0.
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Any serious linear algebra problems are done by a machine. Let us see how to use the open-source
computer algebra system Sage to do basic computations for us.

Sage is freely available at sagemath.org. Instead of installing it locally (it's huge!) we can conveniently use it
in the cloud at cocalc.com from any browser. For short computations, like the one below, you can also just use
the input field on our course website.
Sage is built as a Python library, so any Python code is valid. Here, we will just use it as a fancy calculator.

Let's revisit Example 38 and let Sage do the work for us:

>>> A = matrix([[1,2,1,4],[2,4,0,2],[3,6,0,3]])

>>> A.rref()0@ 1 2 0 1
0 0 1 3
0 0 0 0

1A
Similarly, if we wanted to compute a basis for null(AT), we can simply do:

>>> A.transpose().rref()0BBBBBBBB@
1 0 0

0 1
3
2

0 0 0
0 0 0

1CCCCCCCCA
Here are some other standard things we might be interested in (compare with Example 17):

>>> A = matrix([[4,0,2],[2,2,2],[1,0,3]])

>>> A.eigenvalues()

[5; 2; 2]

>>> A.eigenvectors_right()��
5;

��
1; 1;

1
2

��
; 1

�
; (2; [(1; 0; ¡ 1); (0; 1; 0)]; 2)

�
>>> A.eigenmatrix_right()0BBBB@

24 5 0 0
0 2 0
0 0 2

35;
266664

1 1 0
1 0 1
1
2
¡1 0

377775
1CCCCA

>>> A.rank()

3

>>> A.determinant()

20

>>> A.inverse()0BBBBBBBBBB@
3
10

0 ¡1
5

¡1
5

1
2
¡1
5

¡ 1
10

0
2
5

1CCCCCCCCCCA

Armin Straub
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Application: least squares lines

Given data points (xi; yi), we wish to find optimal parameters a; b such that yi�a+ bxi for all i.

Example 48. Determine the line that �best fits� the data points (2; 1); (5; 2); (7; 3); (8; 3).
Comment. Can you see that there is no line fitting the data perfectly? (Check out the last two points!)

Solution. We need to determine the values a; b for the best-fitting line y= a+ bx.
If there was a line that fit the data perfectly, then:

a+2b=1 (2; 1)

a+5b=2 (5; 2)

a+7b=3 (7; 3)

a+8b=3 (8; 3)

In matrix form, this is:

266664
1 x1
1 x2
1 x3
1 x4

377775
design matrixX

�
a
b

�
=

266664
y1
y2
y3
y4

377775
observation
vector y

(writing the points as (xi; yi))

Using our points, these equations become

266664
1 2
1 5
1 7
1 8

377775� a
b

�
=

266664
1
2
3
3

377775. [This system is inconsistent (as expected).]

We compute a least squares solution.

XTX =

�
1 1 1 1
2 5 7 8

�266664
1 2
1 5
1 7
1 8

377775=�
4 22
22 142

�
; XTy=

�
1 1 1 1
2 5 7 8

�266664
1
2
3
3

377775=�
9
57

�
:

Solving the normal equations
�
4 22
22 142

��
a
b

�
=

�
9
57

�
, we find

�
a
b

�
=

�
2/7
5/14

�
.

Hence, the least squares line is y= 2

7
+

5

14
x.

The plot above shows our points together with this line. It does look like a very good fit!
Important comment. In what sense is this the line of �best fit�? By computing a least squares solution the way
we do, we are minimizing the error y¡X

�
a
b

�
. The components of that error are yi¡ (a+ bxi).

Hence, we see that we are minimizing the residual sum of squares SSres=
P

i [yi¡ (a+ bxi)]
2.

Also see the discussion after the next example (where we swap the role of x and y) as well as the example at
the beginning of next class (where we discuss making predictions and why minimizing SSres corresponds to
minimizing the error of those predictions).
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Notes for Lecture 10 Wed, 2/4/2026

Example 49. (again) Determine the least squares line for the points (2; 1); (5; 2); (7; 3); (8; 3).
Solution. Let's repeat the computation we did in the previous example. This time, we let Sage do the actual
work for us:

>>> X = matrix([[1,2],[1,5],[1,7],[1,8]]); y = vector([1,2,3,3])

>>> (X.transpose()*X).solve_right(X.transpose()*y)�
2
7
;
5
14

�

Here are some intermediate steps to help see what's going on (and that it matches our earlier work):

>>> X.transpose()*X�
4 22
22 142

�
>>> X.transpose()*y

(9; 57)

Let's plot the least squares line y= 2

7
+

5

14
x in Sage to marvel at the good fit!

>>> points = [[2,1],[5,2],[7,3],[8,3]]

>>> scatter_plot(points)

2 3 4 5 6 7 8

1

1.5

2

2.5

3

>>> scatter_plot(points) + plot(2/7+5/14*x,1,9)

1 2 3 4 5 6 7 8 9

1

1.5

2

2.5

3

3.5
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Comment. As mentioned earlier, the least squares line minimizes the (sum of squares of the) vertical offsets:

http://mathworld.wolfram.com/LeastSquaresFitting.html

Comment. We get a (slightly) different �best fit� line if we change the role of x and y! Can you explain that?

>>> X = matrix([[1,1],[1,2],[1,3],[1,3]]); y = vector([2,5,7,8])

>>> (X.transpose()*X).solve_right(X.transpose()*y)�
¡ 7
11
;
30
11

�
Note that x=¡ 7

11
+

30
11
y is equivalent to y= 7

30
+

11
30
x.

>>> scatter_plot([[2,1],[5,2],[7,3],[8,3]]) + plot(2/7+5/14*x,1,9) + plot(7/30+11/30*x,1,
9,color='red')

1 2 3 4 5 6 7 8 9

1

1.5

2

2.5

3

3.5

The explanation is that (see pictures at the beginning of this example) we are minimizing vertical offsets in one
case and horizontal offsets in the other case.
In linear regression, the relationship between a dependent variable and one or more explanatory variables is
modeled. If y is the dependent variable, with x the explanatory variable, then it is natural to minimize the error
we make in �predicting y through x� (vertical offsets). See next example.

Example 50. A car rental company wants to predict the annual maintenance cost y (in
100USD/year) of a car using the age x (in years) of that car (as an explanatory variable). Based
on the observations (x; y) = (2; 1); (5; 2); (7; 3); (8; 3), predict the cost for a 4.5 year
old car (using linear regression).

Solution. Once we compute the regression line y= a+ bx (we already did that: y= 2

7
+

5

14
x), our prediction

is 2
7
+

5

14 � 4.5=
53
28 � 1.89, that is, 189 USD/year.
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Application: multiple linear regression

In statistics, linear regression is an approach for modeling the relationship between
a scalar dependent variable and one or more explanatory variables.

The case of one explanatory variable is called simple linear regression.

For more than one explanatory variable, the process is called multiple linear regres-
sion.

http://en.wikipedia.org/wiki/Linear_regression

The experimental data might be of the form (xi; yi; zi), where now the dependent variable zi
depends on two explanatory variables xi; yi (instead of just xi).

Example 51. Set up a linear system to find values for the parameters a; b; c such that z =
a+ bx+ cy best fits some given points (x1; y1; z1); (x2; y2; z2); :::

Solution. The equations a+ bxi+ cyi= zi translate into the system:266664
1 x1 y1
1 x2 y2
1 x3 y3
��� ��� ���

377775
design matrix A

24 a
b
c

35=
266664
z1
z2
z3
���

377775
observation
vectorz

Of course, this is usually inconsistent. To find the best possible a; b; c we compute a least squares solution by

solving ATA

24 a
b
c

35=ATz.

Application: Fitting data to other curves

We can also fit the experimental data (xi; yi) using other curves.

Example 52. Set up a linear system to find values for the parameters a; b; c that result in the
quadratic curve y= a+ bx+ cx2 that best fits some given points (x1; y1); (x2; y2); :::

Solution. yi� a+ bxi+ cxi
2 with parameters a; b; c.

The equations yi= a+ bxi+ cxi
2 in matrix form:26666664

1 x1 x1
2

1 x2 x2
2

1 x3 x3
2

��� ��� ���

37777775
design matrixA

24 a
b
c

35=
266664
y1
y2
y3
���

377775
observation
vector y

Again, we determine values for a; b; c by computing a least squares solution to that system.

That is, we need to solve the system ATA

24 a
b
c

35=ATy.
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Example 53. (homework) Use Sage to find values for a; b; c that result in the quadratic curve
y= a+ bx+ cx2 that best fits the points (0; 1); (1; 2); (2; 3); (3;¡4); (4;¡7); (5;¡12).
Solution. We first input the points:

>>> points = [[0,1],[1,2],[2,3],[3,-4],[4,-7],[5,-12]]

We set up the system described in the previous example, then determine a least-squares solution.

>>> X = matrix([[1,0,0],[1,1,1],[1,2,4],[1,3,9],[1,4,16],[1,5,25]])

>>> y = vector([1,2,3,-4,-7,-12])

>>> (X.transpose()*X).solve_right(X.transpose()*y)�
3
2
;
179
140

; ¡ 23
28

�
Hence, the best fitting quadratic curve is y= 3

2
+

179
140
¡ 23

28
x2. Here's a plot:

>>> scatter_plot(points) + plot(3/2+179/140*x-23/28*x^2,0,5,color='red')

1 2 3 4 5

-12

-10

-8

-6

-4

-2

2

Advanced comment. If you are comfortable with Python, you can avoid typing out X and y:
[The plot command above now won't work anymore because we are overwriting x with numbers.]

>>> X = matrix([[1,x,x^2] for x,y in points])

>>> y = vector([y for x,y in points])
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Notes for Lecture 11 Fri, 2/6/2026

More on orthogonality

Example 54. (review) Find the least squares solution to Ax= b, where

A=

24 4 0
0 2
1 1

35; b=

24 2
0
11

35:
Solution. First, ATA=

�
4 0 1
0 2 1

�24 4 0
0 2
1 1

35=�
17 1
1 5

�
and ATb=

�
4 0 1
0 2 1

�24 2
0
11

35=�
19
11

�
.

Hence, the normal equations ATAx̂=ATb take the form
�
17 1
1 5

�
x̂=

�
19
11

�
. Solving, we find x̂=

�
1
2

�
.

Check. The error Ax̂¡ b=
24 2

4
¡8

35 is indeed orthogonal to col(A). Because
24 2

4
¡8

35�
24 4
0
1

35=0 and
24 2

4
¡8

35�
24 0
2
1

35=0.

Orthogonal projections

The (orthogonal) projection b̂ of a vector b onto a subspaceW is the vector inW closest to b.

We can compute b̂ as follows:

� Write W = col(A) for some matrix A.

� Then b̂=Ax̂ where x̂ is a least squares solution to Ax=b. (i.e. x̂ solves ATAx̂=ATb)

Why? Why is Ax̂ the projection of b onto col(A)?
Because, if x̂ is a least squares solution then Ax̂ ¡ b is as small as possible (and any element in col(A) is of
the form Ax for some x).

Note. This is a recipe for computing any orthogonal projection! That's because every subspaceW can be written
as col(A) for some choice of the matrix A (take, for instance, A so that its columns are a basis for W ).

Assuming ATA is invertible (which, as discussed in the lemma below, is automatically the case if
the columns of A are independent), we have x̂=(ATA)¡1ATb and hence:

(projection matrix) The projection b̂ of b onto col(A) is (assuming cols of A are independent)

b̂=A(ATA)¡1AT|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
P

b:

The matrix P =A(ATA)¡1AT is the projection matrix for projecting onto col(A).

Example 55.

(a) What is the orthogonal projection of

24 2
0
11

35 onto W = span

(24 4
0
1

35;
24 0
2
1

35
)
?

(b) What is the matrix P for projecting onto W = span

(24 4
0
1

35;
24 0
2
1

35
)
?

(c) (once more) Using P , what is the orthogonal projection of

24 2
0
11

35 onto W ?

(d) Using P , what is the orthogonal projection of

24 1
0
0

35 onto W ?
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Solution.

(a) In other words, what is the orthogonal projection of b=

24 2
0
11

35 onto col(A) with A=
24 4 0
0 2
1 1

35.
In Example 54, we found that the system Ax= b has the least squares solution x=

�
1
2

�
.

The projection b̂ of b onto col(A) thus is Ax̂=
24 4 0
0 2
1 1

35� 1
2

�
=1

24 4
0
1

35+2

24 0
2
1

35=
24 4
4
3

35:
Check. The error b̂¡b=

24 2
4
¡8

35needs to be orthogonal to col(A). Indeed:
24 2

4
¡8

35�
24 4
0
1

35=0 and
24 2

4
¡8

35�
24 0
2
1

35=0.

(b) Note that W = col(A) for A=
24 4 0
0 2
1 1

35 and that ATA=
�
17 1
1 5

�
. Thus (ATA)¡1= 1

84

�
5 ¡1
¡1 17

�
.

P =A(ATA)¡1AT =
1

84

24 4 0
0 2
1 1

35� 5 ¡1
¡1 17

��
4 0 1
0 2 1

�
=

1

21

24 20 ¡2 4
¡2 17 8
4 8 5

35

(c) The orthogonal projection of

24 2
0
11

35 onto W is P

24 2
0
11

35= 1

21

24 20 ¡2 4
¡2 17 8
4 8 5

3524 2
0
11

35= 1

21

24 84
84
63

35=
24 4
4
3

35.
Note. Of course, that agrees with what our computations in the first part. Note that computing P is
more work than what we did in in the first part. However, after having computed P once, we can easily
project many vectors onto W .

(d) The orthogonal projection of

24 1
0
0

35 onto W is P

24 1
0
0

35= 1

21

24 20 ¡2 4
¡2 17 8
4 8 5

3524 1
0
0

35= 1

21

24 20
¡2
4

35.
Check. The error

24 1
0
0

35¡ 1

21

24 20
¡2
4

35= 1

21

24 1
2
¡4

35 is indeed orthogonal to both

24 4
0
1

35 and
24 0
2
1

35.

Example 56. (extra)

(a) What is the orthogonal projection of

24 1
2
2

35 onto span

(24 1
0
1

35;
24 1

1
¡1

35
)
?

(b) What is the orthogonal projection of

24 1
2
2

35 onto span

(24 1
0
1

35
)
?

Solution. (final answer only) The projections are
�
11
6
;
1

3
;
7

6

�
T
and

�
3

2
; 0;

3

2

�
T
.
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Notes for Lecture 12 Mon, 2/9/2026

Example 57. (extra)

(a) What is the matrix P for projecting onto W = span

(24 1
1
1

35;
24 1
¡1
1

35
)
?

(b) Using the projection matrix, project

24 2
3
3

35 onto W = span

(24 1
1
1

35;
24 1
¡1
1

35
)
.

Solution.

(a) Choosing A=

24 1 1
1 ¡1
1 1

35, the projection matrix P is A(ATA)¡1AT =

24 1 1
1 ¡1
1 1

35� 3 1
1 3

�¡1� 1 1 1
1 ¡1 1

�

=

24 1 1
1 ¡1
1 1

351
8

�
3 ¡1
¡1 3

��
1 1 1
1 ¡1 1

�
=
1

8

24 1 1
1 ¡1
1 1

35� 2 4 2
2 ¡4 2

�
=
1

2

24 1 0 1
0 2 0
1 0 1

35.
Comment. We can choose A in any way such that its columns are a basis for W . The final projection
matrix will always be the same.

(b) The projection is 1
2

24 1 0 1
0 2 0
1 0 1

3524 2
3
3

35= 1

2

24 5
6
5

35.
Check. The error

24 2
3
3

35¡ 1

2

24 5
6
5

35=
24 ¡1/20

1/2

35 is indeed orthogonal to W .

Lemma 58. If the columns of a matrix A are independent, then ATA is invertible.
Proof. Assume ATA is not invertible, so that ATAx=0 for some x=/ 0. Multiply both sides with xT to get

xTATAx=(Ax)TAx= kAxk2=0;

which implies that Ax=0. Since the columns of A are independent, this shows that x=0. A contradiction! �

Example 59. If P is a projection matrix, then what is P 2?

For instance. For P as in Example 57, P 2= 1

4

24 1 0 1
0 2 0
1 0 1

352= 1

2

24 1 0 1
0 2 0
1 0 1

35=P .

Solution. Can you see why it is always true that P 2=P?
[Recall that P projects a vector onto a space W (actually, W = col(P )). Hence P 2 takes a vector b, projects
it onto W to get b̂, and then projects b̂ onto W again. But the projection of b̂ onto W is just b̂ (why?!), so
that P 2 always has the exact same effect as P . Therefore, P 2=P .]

Example 60. True or false? If P is the matrix for projecting onto W , then W = col(P ).
Solution. True!
Why? The columns of P are the projections of the standard basis vectors and hence in W . On the other hand,
for any vector w in W , we have Pw=w so that w is a combination of the columns of P .
[This may take several readings to digest but do read (or ask) until it makes sense!]

In particular. rank(P )=dimW (because, for any matrix, rank(A)=dimcol(A))
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Review. The projection matrix for projecting onto col(A) is P =A(ATA)¡1AT .

Projecting onto 1-dimensional spaces

When we project onto a 1-dimensional space spanfwg, we usually just say that we are projecting
onto w.

The (orthogonal) projection of v onto w is
w �v
kwk2 w.

Why? Replace b with v and A with w in our general projection matrix formula to get w(wTw)¡1wTv, which
equals w �v

kwk2 w (note that wTv=w �v and wTw= kwk2 are scalars).

Comment. If you have taken Calculus 3, you have seen that formula before. Most likely, you were deriving it
using angles at that time. Namely, the dot product has the following connection to angles:

v �w= kvk kwk cos� where � 2 [0; �] is the angle between v and w

Why? You can derive this by repeating what we did, right after Definition 29 to show that v andw are orthogonal
if and only if v �w=0. Just replace Pythagoras with the law of cosines (c2= a2+ b2¡ 2ab cos� holds in any
triangle!).
Two obvious cases. Observe that the cases �=0 and �= 90� are clearly true.

We will not discuss angles much further in this class. Just in case it is helpful, here is the typical
argument given in Calculus 3 to determine the projection projwv of v onto w:

From the sketch, we see that �error� = v¡projwv
and that this error is orthogonal to w.

Basic trigonometry tells us that the length of projwv
is kvk cos�. Hence:

projwv = kvk cos�
length

w
kwk

direction

=
kvk kwk cos�

kwk
w
kwk =

�
v �w
kwk2

�
w

v

w

θ

“error”

proj
w
v

Orthogonal bases

Review. Vectors v1; :::;vn are a basis for V .

() V = spanfv1; :::;vng and v1; :::;vn are linearly independent.

() Any vector w in V can be written as w= c1v1+ :::+ cnvn in a unique way.
The latter is the practical reason why we care so much about bases!
V could be some abstract vector space (of polynomials or Fourier series), meaning that vectors are abstract
objects and not just our usual column vectors. However, as soon as we pick a basis of V , then we can represent
every (abstract) vector w by the (usual) column vector (c1; c2; :::; cn)T .
This means all of our results can be used, too, when working with these abstract spaces!

Definition 61. A basis v1; :::; vn of a vector space V is an orthogonal basis if the vectors
are (pairwise) orthogonal. If, in addition, the basis vectors have length 1, then this is called an
orthonormal basis.
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Example 62. The standard basis

24 1
0
0

35;
24 0
1
0

35;
24 0
0
1

35 is an orthonormal basis for R3.

Example 63. Are the vectors

24 1
¡1
0

35;
24 1
1
0

35;
24 0
0
1

35 an orthogonal basis for R3? Is it orthonormal?

Solution.

24 1
¡1
0

35�
24 1
1
0

35=0,

24 1
¡1
0

35�
24 0
0
1

35=0,

24 1
1
0

35�
24 0
0
1

35=0.

So, this is an orthogonal basis.
On the other hand, the vectors do not all have length 1, so that this basis is not orthonormal.
Note. Orthogonal vectors are always linearly independent (see next class). Here, this certifies that the three
vectors are linearly independent (and hence a basis for R3).

Normalize the vectors to produce an orthonormal basis.
Solution.24 1
¡1
0

35 has length
24 1
¡1
0

35�
24 1
¡1
0

35
s

= 2
p

=) normalized: 1

2
p

24 1
¡1
0

35
24 1
1
0

35 has length
24 1
1
0

35�
24 1
1
0

35
s

= 2
p

=) normalized: 1

2
p

24 1
1
0

35
24 0
0
1

35 has length
24 0
0
1

35�
24 0
0
1

35
s

=1 =) is already normalized:

24 0
0
1

35
The resulting orthonormal basis is 1

2
p

24 1
¡1
0

35; 1

2
p

24 1
1
0

35;
24 0
0
1

35.

Theorem 64. Suppose that v1; :::;vn are nonzero and pairwise orthogonal. Then v1; :::;vn are
linearly independent.
Proof. Suppose that c1v1+ :::+ cnvn=0. In order to show that v1; :::;vn are independent, we need to show
that c1= c2= :::= cn=0.
Take the dot product of v1 with both sides:

0 = v1 � (c1v1+ :::+ cnvn)

= c1v1 �v1+ c2v1 �v2+ :::+ cnv1 �vn
= c1v1 �v1= c1kv1k2

But kv1k=/ 0 and hence c1=0. Likewise, we find c2=0, :::, cn=0. Hence, the vectors are independent. �

Comment. Note that this result is intuitively obvious: if the vectors were linearly dependent, then one of
them could be written as a linear combination of the others. However, all these other vectors (and hence any
combination of them) are orthogonal to it.
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Orthogonal projections if we have an orthogonal basis

Lemma 65. (orthogonal projection if we have an orthogonal basis)
If v1; :::;vn are orthogonal, then the orthogonal projection of w onto spanfv1; :::;vng is

ŵ= w �v1
v1 �v1

v1

proj of w
onto v1

+ :::+ w �vn
vn �vn

vn

proj of w
onto vn

:

Proof. It suffices to show that the error w¡ ŵ is orthogonal to each vi. Indeed:

(w¡ ŵ) �vi=
�
w¡ w �v1

v1 �v1
v1¡ :::¡

w �vn
vn �vn

vn

�
�vi=w �vi¡

w �vi
vi �vi

vi �vi=0:

Alternatively, can you deduce the formula (say, in the case of an orthonormal basis) from our earlier formula for
the projection matrix? �
Important consequence. If v1; :::;vn is an orthogonal basis of V , and w is in V , then

w= c1v1+ :::+ cnvn with cj=
w �vj
vj �vj

:

If the v1; :::;vn are a basis, but not orthogonal, then we have to solve a system of equations to find the ci. That
is a lot more work than simply computing a few dot products.

Note. In other words, w decomposes as the sum of its projections onto each basis vector.
Note. If v1; :::;vn are orthonormal, then the denominators are all 1.

Example 66. What is the projection of

24 3
7
4

35ontoW = spanfv1;v2g with v1=
24 1
¡1
0

35, v2=
24 1
1
0

35?
Comment. We know how to do this using least squares. (Do it for practice!)
However, realizing that v1 and v2 are orthogonal makes things easier.
[Actually, here, it is obvious what the projection is going to be if we realized that W is the x-y-plane.]

Solution. (using orthogonality) Because v1 and v2 are orthogonal, the projection is

24 3
7
4

35�
24 1
¡1
0

35
24 1
¡1
0

35�
24 1
¡1
0

35
24 1
¡1
0

35
projection onto v1

+

24 3
7
4

35�
24 1
1
0

35
24 1
1
0

35�
24 1
1
0

35
24 1
1
0

35
projection onto v2

=
¡4
2

24 1
¡1
0

35+ 10
2

24 1
1
0

35=
24 3
7
0

35:

Important note. Note that, at this point, we can easily extend

24 1
¡1
0

35;
24 1
1
0

35 to an orthogonal basis of R3:

That is because the error

24 3
7
4

35¡
24 3
7
0

35=
24 0
0
4

35 is orthogonal to both of the existing basis vectors.

Therefore

24 1
¡1
0

35;
24 1
1
0

35;
24 0
0
4

35 is an orthogonal basis of R3.

This observation underlies the Gram-Schmidt process, which we will discuss next class.
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Example 67. Express

24 3
7
4

35
x

in terms of the basis

24 1
¡1
0

35
v1

;

24 1
1
0

35
v2

;

24 0
0
1

35
v3

.

Solution. Because v1;v2;v3 is an orthogonal basis of R3, we get (much as in the previous example):24 3
7
4

35 = c1

24 1
¡1
0

35+ c2

24 1
1
0

35+ c3

24 0
0
1

35

=

24 3
7
4

35�
24 1
¡1
0

35
24 1
¡1
0

35�
24 1
¡1
0

35

24 1
¡1
0

35
projection of x onto v1

+

24 3
7
4

35�
24 1
1
0

35
24 1
1
0

35�
24 1
1
0

35

24 1
1
0

35
projection of x onto v2

+

24 3
7
4

35�
24 0
0
1

35
24 0
0
1

35�
24 0
0
1

35

24 0
0
1

35
projection of x onto v3

=
¡4
2

24 1
¡1
0

35+ 10
2

24 1
1
0

35+ 4

1

24 0
0
1

35
Because we spelled out all the details this looks more involved than it is. We only computed 6 dot products!

Alternative. We could have solved

24 1 1 0
¡1 1 0
0 0 1

3524 c1
c2
c3

35=
24 3
7
4

35 to also find

24 c1
c2
c3

35=
24 ¡25

4

35.
The numbers are particularly easy here but in general, to find this solution, we have to go through the entire
process of Gaussian elimination. On the other hand, if we have an orthogonal basis, the former approach requires
less work, because it is just computing a few dot products.

Example 68. Express

24 3
7
4

35 in terms of the basis

24 1
1
0

35;
24 0
1
1

35;
24 1
0
1

35.
Solution. This is not an orthogonal basis, so we cannot proceed as in the previous example.

To write

24 3
7
4

35= c1

24 1
1
0

35+ c2

24 0
1
1

35+ c3

24 1
0
1

35, we need to solve

24 1 0 1
1 1 0
0 1 1

3524 c1
c2
c3

35=
24 3
7
4

35.
Solving that system (do it!), we find

24 c1
c2
c3

35=
24 3
4
0

35.
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Notes for Lecture 13 Wed, 2/11/2026

Review. If v1; :::;vn are orthogonal, the orthogonal projection of w onto spanfv1; :::;vng is

ŵ= w �v1
v1 �v1

v1+ :::+ w �vn
vn �vn

vn:

Example 69.

(a) Project

24 3
2
1

35 onto W = span

(24 1
2
1

35;
24 2
¡1
0

35
)
.

(b) Express

24 3
2
1

35 in terms of the basis

24 1
2
1

35;
24 2
¡1
0

35;
24 1

2
¡5

35.
Solution.

(a) We note that the vectors

24 1
2
1

35,
24 2
¡1
0

35 are orthogonal to each other.

Therefore, the projection can be computed as

24 3
2
1

35�
24 1
2
1

35
24 1
2
1

35�
24 1
2
1

35

24 1
2
1

35+
24 3
2
1

35�
24 2
¡1
0

35
24 2
¡1
0

35�
24 2
¡1
0

35

24 2
¡1
0

35= 8

6

24 1
2
1

35+ 4

5

24 2
¡1
0

35.

Comment. If we didn't have an orthogonal basis for W = col

 24 1 2
2 ¡1
1 0

35
!
, then we would have to solve

the least squares problem

24 1 2
2 ¡1
1 0

35x=
24 3
2
1

35 instead to get the same final result (with more work).

(b) Note that this basis is orthogonal! Therefore, we can compute

24 3
2
1

35= 8

6

24 1
2
1

35+ 4

5

24 2
¡1
0

35+ 5

30

24 1
2
¡5

35.
(We proceed exactly as in the previous part to compute each coefficient as a quotient of dot products.)

Gram�Schmidt

(Gram�Schmidt orthogonalization)
Given a basis w1;w2; ::: for W , we produce an orthogonal basis q1; q2; ::: for W as follows:

� q1=w1

� q2=w2¡
�
projection of
w2 onto q1

�

� q3=w3¡
�
projection of
w3 onto q1

�
¡
�
projection of
w3 onto q2

�
� q4= :::

Note. Since q1; q2 are orthogonal,
�

projection of
w3 onto spanfq1; q2g

�
=

�
projection of
w3 onto q1

�
+

�
projection of
w3 onto q2

�
.

Important comment. When working numerically on a computer it actually saves time to compute an orthonormal
basis q1; q2; ::: by the same approach but always normalizing each qi along the way. The reason this saves time
is that now the projections onto qi only require a single dot product (instead of two). This is called Gram�
Schmidt orthonormalization. When working by hand, it is usually simpler to wait until the end to normalize
(so as to avoid working with square roots).
Note. When normalizing, the orthonormal basis q1; q2; ::: is the unique one (up to � signs) with the property
that spanfq1; q2; :::; qkg= spanfw1;w2; :::;wkg for all k=1; 2; :::.
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Example 70. Using Gram�Schmidt, find an orthogonal basis for W = span

(24 1
1
1

35;
24 1
¡1
1

35
)
.

Solution. We already have the basis w1=

24 1
1
1

35, w2=

24 1
¡1
1

35 for W . However, that basis is not orthogonal.

We can construct an orthogonal basis q1; q2 for W as follows:

� q1=w1=

24 1
1
1

35

� q2=w2¡
�
projection of
w2 onto q1

�
=

24 1
¡1
1

35¡ 1

3

24 1
1
1

35= 1

3

24 2
¡4
2

35
Note. q2 is the error of the projection of w2 onto q1. This guarantees that it is orthogonal to q1.
On the other hand, since q2 is a combination of w2 and q1, we know that q2 actually is in W .

We have thus found the orthogonal basis

24 1
1
1

35; 2
3

24 1
¡2
1

35 for W (if we like, we can, of course, drop that 2
3
).

Important comment. By normalizing, we get an orthonormal basis for W : 1

3
p

24 1
1
1

35; 1

6
p

24 1
¡2
1

35.
Practical comment. When implementing Gram�Schmidt on a computer, it is beneficial (slightly less work)
to normalize each qi during the Gram�Schmidt process. This typically introduces square roots, which is why
normalizing at the end is usually preferable when working by hand.
Comment. There are, of course, many orthogonal bases q1; q2 for W . Up to the length of the vectors, ours is
the unique one with the property that spanfq1g= spanfw1g and spanfq1; q2g= spanfw1;w2g.

A matrix Q has orthonormal columns () QTQ= I

Why? Let q1; q2; ::: be the columns of Q. By the way matrix multiplication works, the entries of QTQ are dot
products of these columns: 2664 ¡¡ q1

T ¡¡
¡¡ q2

T ¡¡
���

3775
24 j j
q1 q2 ���
j j

35=
24 1 0 0
0 1 0
0 0 ���

35
Hence, QTQ= I if and only if qi

Tqj=0 (that is, the columns are orthogonal), for i=/ j, and qi
Tqi=1 (that is,

the columns are normalized).

Example 71. Q=

2664 1/ 3
p

1/ 6
p

1/ 3
p

¡2/ 6
p

1/ 3
p

1/ 6
p

3775 obtained from Example 70 satisfies QTQ= I.

The QR decomposition

Just like the LU decomposition encodes the steps of Gaussian elimination, the QR decomposition
encodes the steps of Gram�Schmidt.

(QR decomposition) Every m�n matrix A of rank n can be decomposed as A=QR, where

� Q has orthonormal columns, (m�n)

� R is upper triangular and invertible. (n�n)
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How to find Q and R?

� Gram�Schmidt orthonormalization on (columns of) A, to get (columns of) Q

� R=QTA

Why? If A=QR, then QTA=QTQR which simplifies to R=QTA (since QTQ= I).

The decomposition A=QR is unique if we require the diagonal entries of R to be positive (and this is exactly
what happens when applying Gram�Schmidt).
Practical comment. Actually, no extra work is needed for computing R. All of its entries have been computed
during Gram�Schmidt.
Variations. We can also arrange things so that Q is an m � m orthogonal matrix (this means Q is square
and has orthonormal columns) and R a m� n upper triangular matrix. This is a tiny bit more work (and not
required for many applications): we need to complement �our� Q with additional orthonormal columns and add
corresponding zero rows to R. For square matrices this makes no difference.

Example 72. Determine the QR decomposition of A=
24 1 1
1 ¡1
1 1

35.
Solution. The first step is Gram�Schmidt orthonormalization on the columns of A. We then use the resulting
orthonormal vectors (they need to be normalized!) as the columns of Q.

We already did Gram�Schmidt in Example 70: from that work, we have Q=

2664 1/ 3
p

1/ 6
p

1/ 3
p

¡2/ 6
p

1/ 3
p

1/ 6
p

3775.
Hence, R=QTA=

"
1/ 3
p

1/ 3
p

1/ 3
p

1/ 6
p

¡2/ 6
p

1/ 6
p

#24 1 1
1 ¡1
1 1

35="
3

p
1/ 3
p

0 4/ 6
p

#
.

Comment. The entries of R have actually all been computed during Gram�Schmidt, so that, if we pay attention,
we could immediately write down R (no extra work required). Looking back at Example 70, can you see this?

Check. Indeed, QR=

2664 1/ 3
p

1/ 6
p

1/ 3
p

¡2/ 6
p

1/ 3
p

1/ 6
p

3775" 3
p

1/ 3
p

0 4/ 6
p

#
=

24 1 1
1 ¡1
1 1

35 equals A.
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Example 73. Using Gram�Schmidt, find an orthogonal basis for W = span

8<:
266664
0
3
0
0

377775;
266664
2
1
0
0

377775;
266664
1
1
1
1

377775
9=;.

Solution. We begin with the (not orthogonal) basis w1=

266664
0
3
0
0

377775, w2=

266664
2
1
0
0

377775, w3=

266664
1
1
1
1

377775.
We then construct an orthogonal basis q1; q2; q3:

� q1=w1=

266664
0
3
0
0

377775

� q2=w2¡
�
projection of
w2 onto q1

�
=

266664
2
1
0
0

377775¡ 3

9

266664
0
3
0
0

377775=
266664
2
0
0
0

377775

� q3=w3¡
�
projection of w3

onto spanfq1; q2g

�
=w3¡

�
projection of
w3 onto q1

�
¡
�
projection of
w3 onto q2

�
=

266664
1
1
1
1

377775¡ 3

9

266664
0
3
0
0

377775¡ 2

4

266664
2
0
0
0

377775=
266664
0
0
1
1

377775
Make sure you understand how q3 was designed to be orthogonal to both q1 and q2!
Also note that breaking up the projection onto spanfq1; q2g into the projections onto q1 and q2 is only
possible because q1 and q2 are orthogonal.

Hence,

266664
0
3
0
0

377775;
266664
2
0
0
0

377775;
266664
0
0
1
1

377775 is an orthogonal basis of W .

Important. Normalizing, we obtain an orthonormal basis:

266664
0
1
0
0

377775;
266664
1
0
0
0

377775; 1

2
p

266664
0
0
1
1

377775.

Example 74. Determine the QR decomposition of A=

266664
0 2 1
3 1 1
0 0 1
0 0 1

377775.
Solution. The first step is Gram�Schmidt orthonormalization on the columns of A. We then use the resulting
orthonormal vectors as the columns of Q.

We already did Gram�Schmidt in Example 73: from that work, we have Q=

26666664
0 1 0
1 0 0

0 0 1/ 2
p

0 0 1/ 2
p

37777775.
Hence, R=QTA=

2664 0 1 0 0
1 0 0 0

0 0 1/ 2
p

1/ 2
p

3775
266664
0 2 1
3 1 1
0 0 1
0 0 1

377775=
2664 3 1 1
0 2 1

0 0 2
p

3775.
Comment. As commented earlier, the entries of R have actually all been computed during Gram�Schmidt,
so that, if we pay attention, we could immediately write down R (no extra work required). Looking back at
Example 73, can you see this?
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